PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transmission Perspective on the Mechanism of Coarse and Fine Crackle Sounds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The possibility of a normal distribution indicates that few particles are in the same phase during a breath and their reflections can be observed on the chest wall, then a few explosive waves with relatively large power occurr occasionally. Therefore, the one-cycle sine wave which is simulated as a single burst of the explosive effect phenomenon penetrates through the chest wall and was analysed to explore the reason of the crackle sounds. The results explain the differences between the definitions of crackle proposed by Sovijärvi et al. (2000a). The crackles in the lungs were synthesised by a computer simulation. When the coarse crackles occur, the results indicate that higher burst frequency carriers (greater than 100 Hz) directly penetrate the bandpass filter to simulate the chest wall. The simulated coarse crackle sounds were low pitched, with a high amplitude and long duration. The total duration was greater than 10 ms. However, for a lower frequency carrier (approximately 50 Hz), the fundamental frequency component was filtered out. Therefore, the second harmonic component of the lower frequency carrier, i.e., the fine crackle, penetrated the chest wall. Consequently, it is very possible that the normal lung sounds may contain many crackle-shaped waves with very small amplitudes because of the filtering effects of the chest wall, environment noises, electric devices, stethoscopes, and human ears, the small crackles disappear in the auscultations. In addition, our study pointed out that some unknown crackles of the very low frequency under the bandwidth of the human ears cannot penetrate the airways and be detected by medical doctors. Therefore, it might be necessary to focus advanced electronic instrumentation on them in order to analyse their possible characteristics for diagnosis and treatment of the respiration system.
Rocznik
Strony
289--300
Opis fizyczny
Bibliogr. 41 poz., rys., wykr.
Twórcy
autor
  • Faculty of Automation, Guangdong University of Petrochemical Technology, No. 139, Sec. 2, Guando Road, Maoming City, Guangdong 525000, China
  • Department of Electronic Engineering, Tungnan University, No. 152, Sec. 3., BeiShen Rd., ShenKeng Dist., New Taipei City 22202, Taiwan (R.O.C.)
  • Department of Electronic Engineering, Hwa Hsia University of Technology, No. 111, Gongzhuan Rd., Zhonghe Dist., New Taipei City 235, Taiwan (R.O.C.)
autor
  • Section of Respiration Therapy, Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist., Taipei City 100, Taiwan (R.O.C.)
Bibliografia
  • 1. Alencar A. M., Buldyrev S. V., Majumdar A., Stanley H. E., Suki B. (2001), Avalanche dynamics of crackle sound in the lung, Physical Review Letters, 87 (8): 088101, doi: 10.1103/PhysRevLett.87(8).088101.
  • 2. Bahoura M., Lu X. (2006), Separation of crackles from vesicular sounds using wavelet packet transform, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2: 1076-1079, doi: 10.1109/ICASSP.2006.1660533.
  • 3. Bertram C. D. (2008), Flow-induced oscillation of collapsed tubes and airway structures, Respiratory Physiology Neurobiology, 163 (1-3): 256-265, doi: 10.1016/j.resp.2008.04.011.
  • 4. Charbonneau G., Ademovic E., Cheetham B. M., Malmberg L. P., Vanderschoot J., Sovijärvi A. R. (2000), Basic techniques for respiratory sound analysis, European Respiratory Review, 10 (77): 625-635.
  • 5. Cheetham B. M. G., Charbonneau G., Giordano A., Helisto P., Vanderschoot J. (2000), Digitization of data for respiratory sound recordings, European Respiratory Review, 10 (77): 621-624.
  • 6. Chen H., Yuan X., Pei Z., Li M., Li J. (2019), Triple-classification of respiratory sounds using optimized S-transform and deep residual networks, IEEE Access, 7: 32845-32852, doi: 10.1109/ACCESS.2019.2903859.
  • 7. Cohen A., Landsberg D. (1984), Analysis and automatic classification of breath sounds, IEEE Transactions on Biomedical Engineering, 31 (9): 585-590, doi: 10.1109/TBME.1984.325301.
  • 8. Du M., Chan F. H. Y., Lam F. K., Sun J. (1997), Crackles detection and classification based on matched wavelet analysis, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 4, pp. 1638-1641, Chicago, IL, USA.
  • 9. Dubey R., Bodade M. R. (2019), A review of classification techniques based on neural networks for pulmonary obstructive diseases, Proceedings of Recent Advances in Interdisciplinary Trends in Engineering & Applications (RAITEA) 2019, retrieved from https://ssrn.com/abstract=3363485 or http://dx.doi.org/10.2139/ssrn.3363485.
  • 10. Eren L., Ince T., Kiranyaz S. (2019), A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier, Journal of Signal Processing Systems, 91: 179-189, doi: 10.1007/s11265-018-1378-3.
  • 11. Forgacs P. (1978), Lung sounds, Bailliere Tuidall, London.
  • 12. Grotberg J. B., Gavriely N. (1989), Flutter in collapsible tubes: A theoretical model of wheezes, Journal of Applied Physiology, 66 (5): 2262-2273.
  • 13. Güler İ., Polat H., Ergün U. (2005), Combining neural network and genetic algorithm for prediction of lung sounds, Journal of Medical Systems, 29: 217-231, doi: 10.1007/s10916-005-5182-9.
  • 14. Hadjileontiadis L., Rekanos L. (2003), Detection of explosive lung and bowel sounds by means of fractal dimension, IEEE Signal Processing Letters, 10 (10): 311-314, doi: 10.1109/LSP.2003.817171.
  • 15. Heslinga F. G. et al. (2019), Approximation of a pipeline of unsupervised retina image analysis methods with a CNN, Medical Imaging 2019: Image Processing, International Society for Optics and Photonics, p. 10949, San Diego, CA, USA, doi: 10.1117/12.2512393.
  • 16. Hidaka M., Takahashi M., Ishida T., Kariya K., Mizuno T., Fukuda S. (2019), Signal processing of landing radar considering irradiated surface characteristics by using CNN, AIAA Scitech Forum, p. 1267, San Diego, CA, USA, doi: 10.2514/6.2019-1267.
  • 17. Hoevers J., Loudon R. G. (1990), Measuring crackles, Chest, 98 (5): 1240-1243.
  • 18. Jácome C., Ravn J., Holsbø E., Aviles-Solis J. C., Melbye H., Bongo L. A. (2019), Convolutional neural network for breathing phase detection in lung sounds, Sensors, 19 (8): 1798, doi: 10.3390/s19081798.
  • 19. Kido K. et al. (2019), A novel CNN-based framework for classification of signal quality and sleep position from a Capacitive ECG measurement, Sensors, 19 (7): 1731, doi: 10.3390/s19071731.
  • 20. Korenbauma V. I., Tagiltcev A. A., Gorovoyb S. V., Shiryaev A. D., Kostiv A. E. (2016), On localization of wheezing respiratory sounds in human lungs by means of intensimetric processing of signals detected on the chest surface, Acoustical Physics, 62 (5): 600-607, doi: 10.1134/S1063771016050055.
  • 21. Liu X., Zhang R., Meng Z., Hong R., Liu G. (2019), On fusing the latent deep CNN feature for image classification, World Wide Web, 22: 423-436, doi: 10.1007/s11280-018-0600-3.
  • 22. Lu B. Y., Wu H. D., Shih S. R., Chong F. C., Hsueh M. L., Chen Y. L. (2011), Combination of frequency and amplitude-modulated model for the synthesis of normal and wheezing sounds, Australasian Physical and Engineering Sciences in Medicine, 34: 449-457, doi: 10.1007/s13246-011-0105-1.
  • 23. Melbye H., Garcia-Marcos L., Brand P., Everard M., Priftis K., Pasterkamp H. (2016), Wheezes, crackles and rhonchi: Simplifying description of lung sounds increases the agreement on their classification: A study of 12 physicians’ classification of lung sounds from video recordings, BMJ Open Respiratory Research, 3: e000136, doi: 10.1136/bmjresp-2016-000136.
  • 24. Mukherjee S., Adhikari A., Roy M. (2019), Malignant melanoma classification using cross-platform dataset with deep learning CNN architecture, [in:] Bhattacharyya S., Pal S., Pan I., Das A. [Eds], Recent Trends in Signal and Image Processing. Advances in Intelligent Systems and Computing, Vol. 922, pp. 31-41, Springer, Singapore, doi: 10.1007/978-981-13-6783-0_4.
  • 25. Munakata M. et al. (1986), Production mechanism of crackles in excised normal canine lungs, Journal of Applied Physiology, 61 (3): 1120-1125.
  • 26. Murphy R. L., Jr., Del Bono E. A., Davidson F. (1989), Validation of an automatic crackle (Rale) counter, American Review Respiratory Disease, 140 (4): 1017-1020, doi: 10.1164/ajrccm/140.4.1017.
  • 27. Murphy R. L., Jr., Holford S. K., Knowler W. C. (1977), Visual lung-sound characterization by time-expanded wave-form analysis, The New England Journal of Medicine, 296: 968-971, doi: 10.1056/NEJM197704282961704.
  • 28. Olson D. E., Hammersley J. R. (1985), Mechanisms of lung sound generation, Seminars in Respiratory Medicine, 6 (3): 171-179, doi: 10.1055/s-2007-1011494.
  • 29. Parkhi A., Pawar M. (2011), Analysis of deformities in lung using short time Fourier transform spectrogram analysis on lung sound, International Conference on Computational Intelligence and Communication Networks (CICN), pp. 177-181, Gwalior, India, doi: 10.1109/CICN.2011.35.
  • 30. Ploysongsang Y., Schonfeld S. A. (1982), Mechanism of production of crackles after atelectasis during low-volume breathing, American Review of Respiratory Disease, 126 (3): 413-415.
  • 31. Reichert S., Gass R., Brandt C., Andrès E. (2008), Analysis of respiratory sounds: State of the art, Clinical Medical Insights: Circulatory Respiratory and Pulmonary Medicine, 2: 45-58.
  • 32. Rizal A., Hidayat R., Nugroho H. A. (2017a), Entropy measurement as features extraction in automatic lung sound classification, International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC), pp. 93-97, Yogyakarta, Indonesia, doi: 10.1109/ICCEREC.2017.8226668.
  • 33. Rizal A., Hidayat R., Nugroho H. A. (2017b), Multiresolution modified grey level difference for respiratory sound classification, Advanced Science Letters, 23 (5): 3869-3873, doi: 10.1166/asl.2017.8228.
  • 34. Rizal A., Mengko T. L., Suksmono A. B. (2006), Lung sound recognition using wavelet packet decomposition and ART2 (adaptive resonance theory 2) neural network, Proceedings of Biomedical Engineering Day, Vol. 2, pp. 2-6.
  • 35. Rizal A., Suryani V. (2008), Lung sound recognition using spectrogram and adaptive resonance theory 2 neural network (ART2), Proceedings of Biomedical Engineering Day, Surabaya, Indonesia.
  • 36. Sovijärvi A. R. A. (2000), Characteristics of breath sounds and adventitious respiratory sounds, European Respiratory Review, 10 (77): 591-596.
  • 37. Sovijärvi A. R. A., Dalmasso F., Vanderschoot J., Malmberg L. P., Righini G., Stoneman S. A. T. (2000a), Definition of terms for applications of respiratory sounds, European Respiratory Review, 10 (77): 597-610.
  • 38. Sovijärvi A. R. A., Vanderschoot J., Earis J. E. (2000b), Standardization of computerized respiratory sound analysis, European Respiratory Review, 10 (77): 585.
  • 39. Vyshedskiy A. et al. (2009), Mechanism of inspiratory and expiratory crackles, Chest, 135 (1): 156-164, doi: 10.1378/chest.07-1562.
  • 40. Wodicka G. R., Stevens K. N., Golub H. L., Cravalho E. G., Shannon D. C. (1989), A model of acoustic transmission in the respiratory system, IEEE Transactions of Biomedical Engineering, 36 (9): 925-934, doi: 10.1109/10.35301.
  • 41. Zhang K., Wang X., Han F., Zhao H. (2015), The detection of crackles based on mathematical morphology in spectrogram analysis, Technology and Health Care, 23 (S2): S489-S494, doi: 10.3233/THC-150986.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab6f13bc-d71f-4b7b-95fc-55ff0eeca421
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.