Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Refined Schwarz-Christoffel (SC) conformal transformations allow us to perform reliable quantitative evaluation of the accuracy of local computation of electric and magnetic fields with limited effort, which can be useful to complement well known comparisons of global results. In this paper some examples are presented for mesh point potentials obtained by means of finite difference (FD) methods, but it is possible that similar considerations will be useful in the case of finite element methods (FEM) or meshless computations too.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
263--272
Opis fizyczny
Bibliogr. 10 poz., fig., tab.
Twórcy
autor
- University of Pavia via Sabotino 11/23, 16156 Genova, Italy
Bibliografia
- [1] Driscoll T.A., Trefethen L.N., Schwarz-Christoffel Mapping, Cambridge University Press, 9-30 and 70-74 (2002).
- [2] Costamagna E., Di Barba P., Mognaschi M.E., Savini A., Fast algorithms for the design of complexshape devices in electromechanics, Computational Methods for the Innovative Design of Electrical Devices, Springer, pp. 61-65 (2010).
- [3] Costamagna E., A new approach to standard Schwarz-Christoffel formula calculations, Microwave and Optical Technology Letters 32(3): 196-199 (2002).
- [4] Costamagna E., Di Barba P., Savini A., A kinematic approach to the optimal shape synthesis of electric fields, Electrical Review, ISSN 0033-2097, 88(7b): 90-93 (2012).
- [5] Alfonzetti S., Costamagna E., Fanni A., Computing capacitances of vias in multilayered boards, IEEE Transactions on Magnetics 37(5): 3186-3189 (2001).
- [6] Costamagna E., A simple procedure to optimize small radius rounded corners obtained from Schwarz-Christoffel conformal transformations, IEEE Transactions on Magnetics 51(3): 3186-3189 (2015).
- [7] Costamagna E., Di Barba P., Palka R., Field models of high-temperature superconductor devices for magnetic levitation, Engineering Computations 29(6): 605-616 (2012).
- [8] Van Bladel J., Singular Electromagnetic Fields and Sources, Clarendon Press, Oxford, Chapt. 4 (1991).
- [9] Van Bladel J., How electrically sharp is a needle?, IEEE Antennas and Propagation Magazine, 45(5): 118-122 (2003).
- [10] Costamagna E., Conformal mapping and field singularities in perfectly conducting wedge and rotational symmetry structures, Microwave and Optical Technology Letters 24(3):191-195 (2000).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab6f13a9-fb65-46cd-b305-4c94979c9f7a