PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of composite materials used in brake disc pad manufacturing process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przegląd materiałów kompozytowych stosowanych w procesie wytwarzania tarcz hamulcowych
Języki publikacji
EN
Abstrakty
EN
This article presents the conditions and factors influencing the performance and requirements of brake disc materials. The wear resistance of brake discs must be as high as possible since the reliability of brakes is a fundamental factor affecting the safety of the object in motion. The influence of temperature on the materials was also analyzed, and materials were selected for brake disc components. This article is a research and review study. The article describes studies performed on a flat single disc brake. The authors presented the abrasive wear rate for the tested composites (AlSi12/carbon and AlSi12/aluminosilicates) before and after heat treatment (solution heat treatment at 520°C/4 h and aging at 220°C/4 h). Abrasive wear resistance tests were carried out using a TRN S/N 18-324 device from CSM Instruments, combined with the TriboX v.2.96 system according to the description from the US in the ASTM G 99-90 standard.
PL
Przedstawiono warunki i czynniki wpływające na działanie oraz wymagania dotyczące materiałów tarcz hamulcowych. Odporność na zużycie tarcz hamulcowych musi być jak najwyższa, ponieważ niezawodność hamulców jest podstawowym czynnikiem wpływającym na bezpieczeństwo poruszającego się obiektu. Przeanalizowano także wpływ temperatury na MMC i zaprezentowano materiały na elementy tarczy hamulcowej. Artykuł ten ma charakter przeglądowy. Opisano w nim jedynie badania autorów przedstawiające wskaźnik zużycia ściernego dla metalowych materiałów kompozytowych (AlSi12/węgiel i AlSi12/glinokrzemian) przed i po obróbce cieplnej (obróbka cieplna wygrzewanie w temperaturze 520°C/4 godziny i starzenie w temperaturze 220°C/4 godziny). Testy odporności na zużycie ścierne wykonano z użyciem urządzenia TRN S/N 18-324, CSM Instruments, w połączeniu z systemem TriboX v.2.96 zgodnie z normą ASTM G 99-90.
Rocznik
Strony
60--66
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Faculty of Mechanical Engineering, Institute of Materials Technology, pl. M. Sklodowska-Curie 5, 60-965 Poznan, Poland
  • Poznan University of Technology, Faculty of Mechanical Engineering, Institute of Materials Technology, pl. M. Sklodowska-Curie 5, 60-965 Poznan, Poland
  • Maritime University of Szczecin, Department of Machines Construction and Materials, ul. Willowa 2-4, 71-650 Szczecin, Poland
  • AGH – University of Science and Technology, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Maritime University of Szczecin, Department of Machines Construction and Materials, ul. Willowa 2-4, 71-650 Szczecin, Poland
Bibliografia
  • [1] Sika R., Rogalewicz M., Popielarski P., Czarnecka-Komorowska D., Przestacki D., Gawdzińska K., Szymański P., Decision support system in the field of defects assessment in the metal matrix composites castings, Materials 2020, 13, 3552-3578.
  • [2] Krawczyk J., Pacyna J., Effect of the cooling rate on the mottled cast iron microstructure designed for the mill rolls, Metallurgy and Foundry Engineering of Science and Technology 2009, 35, 101-110.
  • [3] Mercado-Solis R.D., Talamantes-Silva J., Beynon J.H., Hernandez-Rodriguez M.A.L, Modelling surface thermal damage to hot mill rolls, Wear 2007, 263, 1560-1567.
  • [4] Michalczuk H., Tubielewicz K., Chmielik I.P., In preparation control code lathes CNC, Mechanik 2014, 87, 7, 413-422.
  • [5] Mucha M., Nowoczesne technologie wykonywania cylindrycznych powierzchni (tarczowe), Master thesis, Częstochowa 2008.
  • [6] Popczyński K., Określenie i uzasadnienie kryteriów doboru materiałów i technologii w produkcji wybranego podzespołu, Praca przejściowa napisana pod kierunkiem W. Przetakiewicz, WAT, Warszawa 2010 (niepublikowane).
  • [7] Tubielewicz K., Michalczuk H., Chmielik I.P., Brake disc technology, Mechanik 2015, 7, 885-894.
  • [8] Wojciechowski A., Sobczak J., Kompozytowe tarcze hamulcowe pojazdów drogowych, Instytut Transportu Samochodowego, Warszawa 2001.
  • [9] Basavarajappa S., Chandramohan G., Mukund K., Ashwin M., Prabu M., Dry sliding wear behavior of Al 2219/SiCpGr hybrid metal matrix composites., Journal of Materials Engineering and Performance 2006, 15(6), 668-674.
  • [10] Mondal A.K., Kumar S., Dry sliding wear behavior of magnesium alloy based hybrid composites in the longitudinal direction, Wear 2009, 267, 458-466.
  • [11] Vencl A., Rac A., Bobic I., Tribological behaviour of Al-based MMCs and their application in automotive industry, Tribol. Industry 2004, 26(3-4), 31-38.
  • [12] Srivastava S., Mohan S., Study of wear and friction of Al-Fe metal matrix composite produced by liquid metallurgical method, Tribol. Industry 2011, 33(3), 128-137.
  • [13] Kumar K.R., Mohanasundaram M.K., Arumaikkannu G., Subramanian R., Effect of particle size on mechanical properties and tribological behaviour of aluminium/fly ash composites, Science and Engineering of Composite Materials 2012, 19(3), 247-253, DOI: 10.1515/secm-2011-0139.
  • [14] Naplocha K., Granat K., Dry sliding wear of Al/Saffil/Chybrid metal matrix composites, Wear 2008 265, 1734-1740.
  • [15] Ramesh C.S., Adarsha H., Pramod S., Khan Z., Tribological characteristics of innovative Al6061-carbon fiber rod metal matrix composites, Mater. Design 2013, 50, 597-605.
  • [16] Uyyuru K.R., Surappa K.M., Brusethaug S., Tribological behavior of Al-Si-SiCp composites/automobile brake pad system under dry sliding conditions, Tribology International 2007, 40, 365-373.
  • [17] Majhi S., Samantarai P.S., Acharya K.S., Tribological behavior of modified rice husk filled epoxy composite, International Journal of Scientific & Engineering Research 2012, 3, 6, June.
  • [18] Deshmanya B., Purohit K.G., Development of mathematical model to predict micro-hardness of Al7075/Al2O3 composites produced by stir-casting, Journal of Engineering Science and Technology Review 2012, 5, 1, 44-50.
  • [19] Popielarski P., Hajkowski J., Sika R., Ignaszak Z., Computer simulation of cast iron flow in castability trials, Archives of Metallurgy and Materials 2019, 64, 4, 1433-1439, DOI: 10.24425/amm.2019.130110.
  • [20] Popielarski P., Ignaszak Z., Effective modelling of phenomena in over-moisture zone existing in porous sand mould subjected to thermal shock, drying and energy technologies, Advanced Structured Materials 2016, 63, 181-206, DOI: 10.1007/978-3-319-19767-8_10.
  • [21] Gawdzińska K., Bryll K., Nagolska D., Influence of heat treatment on abrasive wear resistance of silumin matrix composite castings, Archives of Metallurgy and Materials 2016, 61(1), 177-182.
  • [22] Gawdzińska K., Chybowski L., Przetakiewicz W., Study of thermal properties of cast metal-ceramic composite foams, Archives of Foundry Engineering 2017, 17(4), 47-50.
  • [23] Gazda A., Homa M., Determination of thermal conductivity of selected types of ductile iron (spheroidal graphite/cast iron) by means of thermal diffusivity measurements with laser-flash method, Prace Instytutu Odlewnictwa 2009, 2, 5-18.
  • [24] Ribeiroa L., Barbosab A., Vianaa F., Monteiro Baptistac A., Diasd C., Ribeiroa C.A., Abrasion wear behaviour of alloyed and chilled cast irons, Wear 2011, 270, 535-540.
  • [25] Krawczyk J., Pacyna J., Influence of a matrix on properties of mottled cast iron applied for mill rolls, Archives of Foundry Engineering 2010, 10, 45-50.
  • [26] Coronadoa J.J., Gómeza A., Sinatoraa A., Tempering temperature effects on abrasive wear of mottled cast iron, Wear 2009, 267, 2070-2076.
  • [27] Madej W., Gazda A., Badanie termofizycznych właściwości wysokofosforowego żeliwa P30 stosowanego na nowego typu wstawki hamulcowe dla kolejnictwa, Odlewnictwo Współczesne - Polska i Świat 2009, 4, 3-6.
  • [28] Orłowicz A.W., Mróz M., Tupaj M., Trytek A., Jacek M., Radoń, M., Cavitation erosion of nodular cast iron - microstructural effects, Archives of Foundry Engineering 2017, 17, 4, 119-122.
  • [29] Orłowicz A.W., Mróz M., Tupaj M., Trytek A., Kupiec B., Korzeniowski M., Sondej K., Kozak L., The effect of carbides orientation in NC11 steel on scratch susceptibility of die inserts used to press stampings for refractory shapes, Archives of Foundry Engineering 2016, 16, 2, 95-98.
  • [30] Przestacki D., Szymanski P., Wojciechowski S., Formation of surface layer in metal matrix composite A359/20SiCP during laser assisted turning, Composites Part A: Applied Science and Manufacturing 2016, 91, 1, 370-379.
  • [31] Wrzesiński T., Teoria samochodu. Hamowanie pojazdów samochodowych, WKiŁ, Warszawa 1978.
  • [32] Gawdzińska K., Nagolska D., Szymański P., Determination of duration and sequence of vacuum pressure saturation in infiltrated MMC castings, Archives of Foundry Engineering 2018, 18(1), 23-28.
  • [33] Bartkowska A., Pertek A., Popławski M., Bartkowski D., Przestacki D., Miklaszewski A., Effect of laser modification of B-Ni complex layer on wear resistance and microhardness, Optics & Laser Technology 2015, 72, 116-124.
  • [34] Gawdzińska K., Chybowski L., Nabiałek M., Szymański P., A study of metal-ceramic composite foams combustibility, Acta Physica Polonica A 2019, 135(2), 304-307.
  • [35] Nozdrzykowski K., Chybowski L., A force-sensor-based method to eliminate deformation of large crankshafts during measurements of their geometric condition, Sensors 2019, 19(16), 3507, 1-25.
  • [36] Krawiec P., Różański L., Czarnecka-Komorowska D., Warguła Ł., Evaluation of the thermal stability and surface characteristics of thermoplastic polyurethane V-belt, Materials 2020, 13, 1502.
  • [37] Xin, Cheng Guang Xu, Liu Fei Qing, Friction properties of sisal fiber reinforced resin brake composites, Wear 2007, 4, 4262, 5-6, 4, 736-741, DOI: 10.1016/j.wear.2006.08.010.
  • [38] Czarnecka-Komorowska D., Grześkowiak K., Popielarski P., Barczewski, M., Gawdzińska K., Popławski M., Polyethylene wax modified by organoclay bentonite used in the lost-wax casting process: Processing - structure - property relationships, Materials 2020, 13, 2255.
  • [39] Menapace C., Leonardi M., Secchi M. et al., Thermal behavior of a phenolic resin for brake pad manufacturing, J. Therm. Anal. Calorim. 2019, 137, 759-766.
  • [40] Chen Y., Chen Z., Xiao S., Liu H., A novel thermal degradation mechanism of phenol-formaldehyde type resins, Thermochim. Acta 2008, 476(1-2), 39-43.
  • [41] Hai-Qing Wang, Xing-Yang Wu, Tong-Sheng Li, Xu-Jun Liu, Pei-Hong Cong, Effect of the matrix resin structure on the mechanical properties and braking performance of organic brake pads, Journal of Applied Polymer Science 2012, 126, 1746-1753.
  • [42] Crciun A.L., Pinca-Bretotean C., Birtok-Băneasă C., Josan A., Composites materials for friction and braking application, 2017 IOP Conf. Ser.: Mater. Sci. Eng. 2009, 200, 1, DOI: 10.1088/1757-899X/200/1/012009.
  • [43] Pietrowski S., Silumins, Lodz University of Technology, Lodz 2001 (in Polish).
  • [44] Fu H.H., Han K.S., Song J., Wear properties of Saffil/Al, Saffil/Al2O3/Al and Saffil/SiC/Al hybrid metal matrix composites, Wear 2004, 256, 705-713.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab643652-6d3c-4c27-be53-f69d188285cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.