PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An improved algorithm for the series step-up method based on a linear three-ports network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Capacitive leakage and adjacent interference are the main influence sources of the measuring error in the traditional series step-up method. To solve the two problems, a new algorithm was proposed in this study based on a three-ports network. Considering the two influences, it has been proved that response of this three-ports network still has characteristics of linear superposition with this new algorithm. In this threeport network, the auxiliary series voltage transformers use a two-stage structure that can further decrease measurement uncertainty. The measurement uncertainty of this proposed method at 500/√3 kV is 6.8 ppm for ratio error and 7 μrad for phase displacement ( k = 2). This new method has also been verified by comparing its results with measurement results of the PTB in Germany over the same 110/√3 kV standard voltage transformer. According to test results, the error between the two methods was less than 2.7 ppm for ratio error and 2.9 μrad for phase displacement.
Rocznik
Strony
301--313
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr., wzory
Twórcy
autor
  • State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road Hongshan District, Wuhan, China
  • China Electric Power Research Institute, Wuhan, China
autor
  • State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road Hongshan District, Wuhan, China
autor
  • China Electric Power Research Institute, Wuhan, China
autor
  • China Electric Power Research Institute, Wuhan, China
autor
  • China Electric Power Research Institute, Wuhan, China
Bibliografia
  • [1] Zhou, F., Mohns, E., Jiung, C., He, X., & Yue, C. (2014, August). 1000 V Self-calibrating Inductive Voltage Divider with coaxial-cable winding. In 29th Conference on Precision Electromagnetic Measurements (CPEM2014) (pp. 128-129). IEEE. https://doi.org/10.1109/CPEM.2014.6898292
  • [2] Budovsky, I. F., Small, G. W., Gibbes, A. M., & Mander, J. R. (2004, June). Calibration of 1000 V/50 Hz inductive voltage dividers and ratio transformers. In 2004 Conference on Precision Electromagnetic Measurements (pp. 322-323). IEEE. https://doi.org/10.1109/CPEM.2004.305595
  • [3] Hill, J. J., & Miller, A. P. (1962). A seven-decade adjustable-ratio inductively-coupled voltage divider with 0.1 part per million accuracy. Proceedings of the IEE-Part B: Electronic and Communication Engineering, 109(44), 157-162. https://doi.org/10.1049/pi-b-2.1962.0180
  • [4] So, E., & Latzel, H. G. (2001). NRC-PTB intercomparison of voltage transformer calibration systems for high voltage at 60 Hz, 50 Hz, and 16.66 Hz. IEEE Transactions on Instrumentation and Measurement, 50(2), 419-421. https://doi.org/10.1109/19.918156
  • [5] Borkowski, D., Nabielec, J., & Wetula, A. (2015, June). Experimental verification of the voltage divider with auto-calibration. In 2015 International School on Nonsinusoidal Currents and Compensation (ISNCC) (pp. 1-5). IEEE, https://doi.org/10.1109/ISNCC.2015.7174688
  • [6] Nabielec, J., & Wetula, A. (2016). A voltage divider with autocalibration - a version with single compensation. Przegląd Elektrotechniczny, 92(11), 11-14. https://doi.org/10.15199/48.2016.11.03
  • [7] Braun, A., Richter, H., & Danneberg, H. (1980). Determination of voltage transformer errors by means of a parallel-series step-up method. IEEE Transactions on Instrumentation and Measurement, 29(4), 490-492. https://doi.org/10.1109/TIM.1980.4314987
  • [8] Leren, W. (1990, June). A series summation method for the determination of voltage ratios at power frequency with high accuracy. In Conference on Precision Electromagnetic Measurements (pp. 378-379). IEEE. https://doi.org/10.1109/CPEM.1990.110068
  • [9] Leren, W. (1992). New circuit and application for voltage summation method in industrial frequency. ACTA Metrologica Sinica, 13(3), 221-225.
  • [10] Li, Q., Wang, L., Zhang, S.,Tang, Y., & Xu, Y. (2012). Method to determine the ratio error of DC high-voltage dividers. IEEE Transactions on Instrumentation and Measurement, 61(4), 1072-1078. https://doi.org/10.1109/TIM.2011.2178672
  • [11] Zhou, F., Jiang, C., Lei, M., & Lin, F. (2019). Improved stepup method to determine the errors of voltage instrument transformer with high accuracy. IEEE Transactions on Instrumentation and Measurement, 69(4), 1308-1312. https://doi.org/10.1109/TIM.2019.2909939
  • [12] Liu, H., Zhou, F., Chen, L., Lei, M., Yin, X., Jiang, C., & Liu, J. (2021). The Development of Precision 500/√3-kV Two-Stage Voltage Transformer With High-Voltage Excitation. IEEE Transactions on Instrumentation and Measurement, 70, 1-7. https://doi.org/10.1109/TIM.2021.3053979
  • [13] Feng, Z., Chunyang, J., Min, L., Fuchang, L., & Shihai, Y. (2019). Development of ultrahigh-voltage standard voltage transformer based on series voltage transformer structure. IET Science, Measurement & Technology, 13(1), 103-107. https://doi.org/10.1049/iet-smt.2018.5258
  • [14] Mohns, H., Chunyang, J., Badura, H., & Raether, P. (2018). A fundamental step-up method for standard voltage transformers based on an active capacitive high-voltage divider. IEEE Transactions on Instrumentation and Measurement, 68(6), 2121-2128. https://doi.org/10.1109/TIM.2018.288005
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab640899-02e1-4420-84d5-df775e9d91eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.