Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Capacitive leakage and adjacent interference are the main influence sources of the measuring error in the traditional series step-up method. To solve the two problems, a new algorithm was proposed in this study based on a three-ports network. Considering the two influences, it has been proved that response of this three-ports network still has characteristics of linear superposition with this new algorithm. In this threeport network, the auxiliary series voltage transformers use a two-stage structure that can further decrease measurement uncertainty. The measurement uncertainty of this proposed method at 500/√3 kV is 6.8 ppm for ratio error and 7 μrad for phase displacement ( k = 2). This new method has also been verified by comparing its results with measurement results of the PTB in Germany over the same 110/√3 kV standard voltage transformer. According to test results, the error between the two methods was less than 2.7 ppm for ratio error and 2.9 μrad for phase displacement.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
301--313
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr., wzory
Twórcy
autor
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road Hongshan District, Wuhan, China
- China Electric Power Research Institute, Wuhan, China
autor
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road Hongshan District, Wuhan, China
autor
- China Electric Power Research Institute, Wuhan, China
autor
- China Electric Power Research Institute, Wuhan, China
autor
- China Electric Power Research Institute, Wuhan, China
Bibliografia
- [1] Zhou, F., Mohns, E., Jiung, C., He, X., & Yue, C. (2014, August). 1000 V Self-calibrating Inductive Voltage Divider with coaxial-cable winding. In 29th Conference on Precision Electromagnetic Measurements (CPEM2014) (pp. 128-129). IEEE. https://doi.org/10.1109/CPEM.2014.6898292
- [2] Budovsky, I. F., Small, G. W., Gibbes, A. M., & Mander, J. R. (2004, June). Calibration of 1000 V/50 Hz inductive voltage dividers and ratio transformers. In 2004 Conference on Precision Electromagnetic Measurements (pp. 322-323). IEEE. https://doi.org/10.1109/CPEM.2004.305595
- [3] Hill, J. J., & Miller, A. P. (1962). A seven-decade adjustable-ratio inductively-coupled voltage divider with 0.1 part per million accuracy. Proceedings of the IEE-Part B: Electronic and Communication Engineering, 109(44), 157-162. https://doi.org/10.1049/pi-b-2.1962.0180
- [4] So, E., & Latzel, H. G. (2001). NRC-PTB intercomparison of voltage transformer calibration systems for high voltage at 60 Hz, 50 Hz, and 16.66 Hz. IEEE Transactions on Instrumentation and Measurement, 50(2), 419-421. https://doi.org/10.1109/19.918156
- [5] Borkowski, D., Nabielec, J., & Wetula, A. (2015, June). Experimental verification of the voltage divider with auto-calibration. In 2015 International School on Nonsinusoidal Currents and Compensation (ISNCC) (pp. 1-5). IEEE, https://doi.org/10.1109/ISNCC.2015.7174688
- [6] Nabielec, J., & Wetula, A. (2016). A voltage divider with autocalibration - a version with single compensation. Przegląd Elektrotechniczny, 92(11), 11-14. https://doi.org/10.15199/48.2016.11.03
- [7] Braun, A., Richter, H., & Danneberg, H. (1980). Determination of voltage transformer errors by means of a parallel-series step-up method. IEEE Transactions on Instrumentation and Measurement, 29(4), 490-492. https://doi.org/10.1109/TIM.1980.4314987
- [8] Leren, W. (1990, June). A series summation method for the determination of voltage ratios at power frequency with high accuracy. In Conference on Precision Electromagnetic Measurements (pp. 378-379). IEEE. https://doi.org/10.1109/CPEM.1990.110068
- [9] Leren, W. (1992). New circuit and application for voltage summation method in industrial frequency. ACTA Metrologica Sinica, 13(3), 221-225.
- [10] Li, Q., Wang, L., Zhang, S.,Tang, Y., & Xu, Y. (2012). Method to determine the ratio error of DC high-voltage dividers. IEEE Transactions on Instrumentation and Measurement, 61(4), 1072-1078. https://doi.org/10.1109/TIM.2011.2178672
- [11] Zhou, F., Jiang, C., Lei, M., & Lin, F. (2019). Improved stepup method to determine the errors of voltage instrument transformer with high accuracy. IEEE Transactions on Instrumentation and Measurement, 69(4), 1308-1312. https://doi.org/10.1109/TIM.2019.2909939
- [12] Liu, H., Zhou, F., Chen, L., Lei, M., Yin, X., Jiang, C., & Liu, J. (2021). The Development of Precision 500/√3-kV Two-Stage Voltage Transformer With High-Voltage Excitation. IEEE Transactions on Instrumentation and Measurement, 70, 1-7. https://doi.org/10.1109/TIM.2021.3053979
- [13] Feng, Z., Chunyang, J., Min, L., Fuchang, L., & Shihai, Y. (2019). Development of ultrahigh-voltage standard voltage transformer based on series voltage transformer structure. IET Science, Measurement & Technology, 13(1), 103-107. https://doi.org/10.1049/iet-smt.2018.5258
- [14] Mohns, H., Chunyang, J., Badura, H., & Raether, P. (2018). A fundamental step-up method for standard voltage transformers based on an active capacitive high-voltage divider. IEEE Transactions on Instrumentation and Measurement, 68(6), 2121-2128. https://doi.org/10.1109/TIM.2018.288005
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab640899-02e1-4420-84d5-df775e9d91eb