
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

P D -B C A F F S
C P R D S

P D -B C A F F S
C P R D S

P D -B C A F F S
C P R D S

P D -B C A F F S
C P R D S

Submi ed: 8th August 2016; accepted: 1st September 2016

Krzysztof Hryniów, Konrad Andrzej Markowski

DOI: 10.14313/JAMRIS_3-2016/23

Abstract:
This paper presents in-depth the parallel computer al-
gorithm for the determina on of characteris c polyno-
mial realisa ons of dynamic system. The main differ-
ences between the depicted method and other state-
of-the-art solu ons include finding not few realisa ons,
but a whole set, and the fact that the found realisa-
ons are alwaysminimal amongall possible. As digraphs-

building methods used in the algorithm are NP-complete
or NP-hard problems, the algorithm is paralleled and
GPGPU (General-Purpose compu ng on Graphics Proces-
sor Units) computa on is proposed as the only feasi-
ble solu on. The ar cle describes in detail the proposed
method, discusses it’s complexity, presents op misa on
solu ons and s ll open problems. The working algorithm
is illustrated with a numerical example and compared to
results of other known methods.

Keywords: dynamic system, GPGPU, characteris c poly-
nomial, digraphs, algorithm

1. Introduc on
Many problems for dynamic systems (both posi-

tive and not) are still not completely solved, for exam-
ple: the determination of lower and upper bounds of
reachability index [8, 11], determination of reachabil-
ity index set [7,12,34], etc. One of such problems is the
realisation problem. In many research studies, we can
ind a canonical form of the system [27, 30, 31, 33] i.e.
constant matrix form, which satis ies the system de-
scribed by the transfer function. With the use of this
form, we are able to write only one realisation of the
system [4,37, 39], while there exist many possible so-
lutions. This means that we can ind many sets of ma-
trices which it into the system transfer function, but
methods other then the canonical forms are required.

The digraphs theory was applied to the analy-
sis of dynamical systems was proposed for the irst
time in the paper [11] to the analysis of positive two-
dimensional systems. Since then, there were more in-
stances of using this theory in research on dynamic
systems. Earlier in [19] and [20], a solution for ind-
ing a set of possible realisations of the characteristic
polynomial was proposed, but due to a complicated
nature of the problem further experimentation shown
that it tended to ind some improper solutions and the
practical implementation was slow. In this article, we
propose an upgraded and full version of the computer
algorithm based on research results achieved during
practical testing of earlier algorithms, optimised to

be able to achieve results in a limited time. The algo-
rithm inds a set of possible digraphs realisations of
characteristic polynomial in spite of such task being a
NP-hard problem. To achieve such a solution, parallel
computing with the use of GPUs (Graphics Processing
Units) is used.

1.1. No on
In this paper the following notionwill be used. The

set 𝑛 × 𝑚 real matrices will be denoted by ℝ × and
ℝ = ℝ × . If 𝐆 = [𝑔] is a matrix, we write 𝐆 ⩾ 0
(matrix 𝐆 is called non-negative), if 𝑔 ⩾ 0 for all 𝑖,
𝑗; 𝐆 > 0 (matrix 𝐆 is called positive), if 𝐆 ⩾ 0 and
any 𝑔 > 0; 𝐆 ≫ 0 (matrix 𝐆 is called strictly posi-
tive), if 𝑔 > 0 for all 𝑖, 𝑗. The set of 𝑛 × 𝑚 real matri-
ceswithnon-negative entrieswill be denotedbyℝ ×

and ℝ = ℝ × . The 𝑛 × 𝑛 identity matrix will be de-
noted by 𝐈 . For more information about the matrix
theory, an interested reader is referred, for instance,
to [3,16].

1.2. 2-D Systems
Consider the two-dimensional (2D) general model

∑ = (𝐀 , 𝐀 , 𝐀 , 𝐁 , 𝐁 , 𝐁 , 𝐂, 𝐃) [9] described by the
equation:

𝑥 , = 𝐀 𝑥 , + 𝐀 𝑥 , + 𝐀 𝑥 , +
+𝐁 𝑢 , + 𝐁 𝑢 , + 𝐁 𝑢 , (1)

𝑦(𝑖, 𝑗) = 𝐂𝑥 , + 𝐃𝑢 ,

where 𝑥 , ∈ ℝ , 𝑢 , ∈ ℝ and 𝑦 , ∈ ℝ is state,
input and output vector, respectively at the point (𝑖, 𝑗)
and 𝐀 ∈ ℝ × ; 𝐁 ∈ ℝ × ; 𝑘 = 0, 1, 2; 𝐂 ∈ ℝ × ,
𝐃 ∈ ℝ × .

From (1) for 𝐁 = 𝐁 = 0 we obtain the irst
Fornasini-Marchesini model [9] and for 𝐀 = 0 and
𝐁 = 0 the second Fornasini-Marchesini model [9].

The transfermatrix𝐓(𝑧 , 𝑧) ∈ ℝ × of themodel
(1) is given by:

𝐓(𝑤 ,𝑤) = 𝐂 [𝐈 − 𝐀 𝑤 𝑤 − 𝐀 𝑤 − 𝐀 𝑤] ⋅ (2)
⋅ [𝐁 𝑤 𝑤 + 𝐁 𝑤 + 𝐁 𝑤] + 𝐃.

In the paper we can assumewithout loss of generality
that the𝐃 = 0, as symbolic form of the transfermatrix
will be the same, as in the model matrix 𝐃 in luences
only numeric values of the terms.

1.3. Characteris c Polynomial
Let 𝔽 be a ield e.g., of the real numberℝ. The func-

tion 𝑃(𝑤 ,𝑤) of the variable 𝑤 ,𝑤 , is called polyno-

38

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

mial:

𝑝(𝑤 ,𝑤) = 𝑎 , 𝑤 𝑤 (3)

in the variables 𝑤 ,𝑤 , over the ield 𝔽, where 𝑎 , ∈
𝔽 are called the coef icients of the polynomial.

The set of polynomial (3) over the ield 𝔽 will be
denoted by 𝔽[𝑤 ,𝑤].

If 𝑎 , ≠ 0, then the non-negative integer 𝑛 =
𝑛 + 𝑛 is called the degree of a polynomial and is de-
noted 𝑑𝑒𝑔 𝑝(𝑤 ,𝑤), ie., 𝑛 = 𝑑𝑒𝑔 𝑝(𝑤 ,𝑤). The poly-
nomial is called monic, if 𝑎 , = 1 and zero polyno-
mial, if 𝑎 , = 0.

For example, for a two-dimensional system the char-
acteristic polynomial consists of two variables: 𝑧 and
𝑧 if we have a discrete time system; 𝑠 and 𝑠 if we have
a continuous time system; 𝑧 and 𝑠 if we have a hybrid
system.

Interested reader may ind de inition and proper-
ties of the characteristic polynomial in books on linear
algebra, for example in [5, ch. 9].
1.4. Digraphs

A directed graph (called also digraph) 𝒟 consists
of a non-empty inite set 𝕍(𝒟) of elements called ver-
tices and a inite set 𝔸(𝒟) of ordered pairs of distinct
vertices called arcs. We call 𝕍(𝒟) the vertex set and
𝔸(𝒟) the arc set of 𝒟. We will often write 𝒟 = (𝕍,𝔸)
which means that 𝕍 and 𝔸 are the vertex set and arc
set of 𝒟, respectively. The order of 𝒟 is the number of
vertices in 𝒟. The size of 𝒟 is the number of arc in 𝒟.
For an arc (𝑣 , 𝑣), the irst vertex 𝑣 is its tail and the
second vertex 𝑣 is its head. More information about
the digraph theory is given in [1,13,14,36].

A two-dimensional digraphs 𝒟() is a directed
graph with two types of arcs and input lows. For the
irst time, this type of digraph was presented in pa-
pers [10] and [11].Whenwe generalise this approach,
we can de ine 𝑛-dimensional digraphs. In this case
we have 𝑞 types of arcs and input lows. There exists
𝒜 –arc (or 𝒜 –arc,…,𝒜 –arc) from vertex 𝑣 to ver-
tex 𝑣 if and only if the (𝑖, 𝑗)–th entry of the matrix
𝐀 (or 𝐀 ,…,𝐀) is non-zero. There exist ℬ –arc (or
ℬ –arc,…,ℬ –arc) from source 𝑠 to vertex 𝑣 if and
only if the (𝑖,𝑚)–th entryof thematrix𝐁 (or𝐁 ,…,𝐁)
is non-zero.

For the system described by the matrices

𝐀 =

⧵
0 2 0
3 0 0
0 1 0

, 𝐀 =

⧵
0 0 4
0 0 2
7 0 0

(4)

we can draw two-dimensional digraph𝒟() presented
in Figure 1 consisting of vertices 𝑣 , 𝑣 and 𝑣 .
1.5. GPGPU

GPU (Graphics Processing Unit) is a single-chip
processor with integrated transform, lighting, trian-
gle setup/clipping, and rendering engines that is ded-
icated to high-performance 3D graphics, but can also

Fig. 1. Digraph 𝒟() corresponding to (4)

be used for GPGPU (General-Purpose computing on
Graphics Processor Units) problems, as it is suited for
parallel programming with coherent and predictable
memory access. In such problems, GPU and CPU co-
processing (sequential parts of algorithms are run on
CPU and parallel parts are run on GPU) outstrips tra-
ditional CPU-based algorithms due to its high compu-
tational capacity [32].

GPGPU solutions allow to increase the speed of the
algorithm (usually by one or two orders of magnitude,
depending on problem and implementation), but par-
allel execution of the algorithm and unique GPU ar-
chitecture require different construction of the algo-
rithm and memory allocation solutions, as GPU archi-
tecture is optimised for executing many concurrent
threads slowly, rather than executing a single thread
quickly and its memory is constructed and allocated
differently. One of important features of GPGPU al-
gorithms are kernels – functions executed in parallel
(synchronous or asynchronous) way only on device
(GPU card) that are allocated into blocks and grids (2D
and 3D structures) with shared memory. Kernels al-
low very fast concurrent computation, especially for a
problem when tasks share some common features –
as in graph exploration problems [15]. CUDA is a par-
allel computing platform and programmingmodel de-
veloped by NVIDIA Corporation, increasing comput-
ing performance for parallel problems with the use of
GPUs.

2. Problem Statement
Our task is the following: for a given characteristic

polynomial (3) determine entries of the state matri-
ces 𝐀 and 𝐀 using two-dimensional 𝒟() digraphs
theory. The dimension of the state matrices must be
the minimal among the possible ones and cannot con-
tain additional coef icients of the characteristic poly-
nomial.
2.1. State-of-the-art

Currently, entries of the state matrices are deter-
mined using canonical forms, a method which gives
one of possible realisations of the characteristic poly-
nomial [2, 28, 33]. State-of-the-art algorithms were
proposed in [4,26,29,38–40] andare comparedbrie ly
to the algorithm presented in this paper in the latter
part of the article (Section 4.4).

There are no known methods of inding a set of
all possible realisations for a given characteristic poly-
nomial, due to the complexity of the problem. First
proposition of such a method was given in [19] and
[20], but the proposed method was only theoretical
and extensive testing showed that it was not feasible
for practical implementation as the problem of ind-
ing all possible realisations of a given polynomial is

39

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

of such complexity that it cannot be solved in reason-
able time even by the brute-force GPGPUmethod [18].
In [22, 24, 35] further improvements to the proposed
algorithm were made and in [23] correspondence be-
tween digraph structures and ability to obtain com-
plete results using the algorithm was discussed.
2.2. Proposed Solu on

This paper presents for the irst time the complete
implementation of digraph-based algorithm for ind-
ing a set of solutions in form of state matrices of 2D
dynamic system.The algorithmstartswith creatingdi-
graphs for all monomials in the characteristic polyno-
mial, then joins them by the use of disjoint union to
create all possible variants of digraphs representing
the polynomial realisation. The algorithmuses growth
and prune steps to eliminate redundant solutions be-
fore themain computational step that is executed con-
currently on multiple CUDA kernels to achieve speed
needed due to the complexity of the problem (as ex-
plained in Section 4). Result of the algorithm’s work is
in the form of state matrices 𝐀 and 𝐀 . Algorithm is
explained in detail in Section 3.

3. Main Result
Remark 1 In algorithm’s pseudo-code, all arrays and
vectors are numbered starting from 1 for clarity. Also,
vectors that are used in the GPU-part of the algorithm
are often presented as matrices (despite CUDA allowing
only the use of vectors on the device part of the algo-
rithm), so it is easier for the reader to understand how
the algorithm works.

Function 1Main
Output: All possible polynomial realisations with informa-

tion: {valid / no intersection / incorrect number of cy-
cles}

1: ; // Total number of solutions
2: [, ,] ←

(); // – number of
monomials in polynomial

3: Create and matrices;
4: for to do
5: ← sub-graph size for given monomial;
6: (, ,

, ,);
7: (, , ,

, ,);
8: = max();
9: Determine number of in characteristic polyno-

mial;
10: (, , , ,

,);

Function 𝑙𝑜𝑎𝑑𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙() (line 2) re-
turns (through pointers) a number of monomi-
als, number of variables (colours) in the poly-
nomial and information about monomials in
form 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[𝑚𝑜𝑛][𝑐𝑜𝑙𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟] =
𝑐𝑜𝑙𝑜𝑢𝑟_𝑝𝑜𝑤𝑒𝑟; matrix 𝑑𝑎𝑡𝑎 contains informa-
tion about possible monomial realisations in the
form [𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠] = [𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠], while 𝑙𝑒𝑔𝑒𝑛𝑑

matrix contains information about the number and
size of those realisations in the form [𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙] =
[𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠; 𝑠𝑖𝑧𝑒𝑜𝑓𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙].

Function 2monomialVertexStart
Parameters: , , , ,

Output: ,
1: = []; // Vector is cre-

ated from one row of the array
2: ← number of position (colour) of irst non-zero value

in []
3: [] ;
4: [] [] ;
5: if (!) then
6: (, ,

, , , ,);

Function 2 is the irst part of the growth part of
algorithm, used for creation of new realisations by
means of DFS (Depth- irst Search) on a sub-graph. It
creates a part of realisation for the irst vertex, which
reduces the number of redundant realisations created
by Function 3, as each realisation not startingwith the
irst non-zero colour can be obtained from other real-
isations by means of swapping columns / rows.

Function 3monomialVertex
Parameters: , , , ,

, ,
Output:
1: for to do
2: if ([]!) then
3: for to do
4: if (!) then
5: [] = [];
6: else
7: [] =

[] ;
8: [] ;
9: if (!) then

10: (, ,
,

, , ,
);

11: else
12: ;
13: [] ; //

Recurrent growth algorithm inished and
all information about given realisation is
obtained

Recurrent Function 3 forms the core of the growth
part of the algorithm. It is executed for all possible
combinations of monomial realisations for a given
sub-graph size and number of colours. Some of the
realisations obtained can be redundant as they will
be removed by the prune step of the algorithm in
Function 4. In lines 1–8, the function puts another
element into 𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠 vector and after it is full
(line 11) a given realisation is added into the 𝑑𝑎𝑡𝑎
matrix as a new solution.

40

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

Function 4monomialVertexPrune
Parameters: , , , , ,
Output: ,
1: [][]= [][]; // in the case

of irst monomial, [][] ;
2: [][] ; // number

of solutions for a given monomial
3: Create for matrix;
4: for to do
5: ; // Number of removed solutions
6: Create for matrix shifted by posi-

tions;
7: for to do
8: for to () do
9: if ([] []) then

10: // If both hash functions have the
same values, it means the second re-
alisation can be achieved by shifting
rows/columns and it is redundant

11: [] ;
12: ;
13: ;
14: corresponding to is zeroed;
15: BREAK
16: if (!) then
17: Sort matrix, so all non-zero elements are

before zeroes
18: // Information about realisations is inserted into

matrix;
19: [][] ;
20: [][] ;

Function 4 forms the prune part of a candidate
generation algorithm. All redundant solutions gener-
ated earlier in Functions 2 and 3 are removed. To
achieve this, the fast algorithm checks control sums
(hashes) that are unique – if two hashes are the same,
itmeans that the second solution canbeobtained from
the irst by classical shifting of rows and/or columns
and one of the solutions is redundant. To check for all
possibilities, there is a need (𝑠𝑖𝑧𝑒 - 1) shifts. Hashes
are generated as follows:

𝑑𝑎𝑡𝑎[𝑥][𝑒] ∗ 𝑐𝑜𝑙𝑜𝑢𝑟𝑠 , (5)

where 𝑒 is a number of elements in the solution
vector, 𝑥 is a number of solutions.

After each step, the 𝑑𝑎𝑡𝑎 matrix is sorted, so that
non-empty elements are placed in a continuous form.
If the function in any step removes solutions to just
one for a given monomial (or if after the growth step
there is only one solution), it breaks loops to avoid un-
necessarywork. After the process of pruning of gener-
ated solutions is inished, current information about
solutions is stored in the 𝑙𝑒𝑔𝑒𝑛𝑑 matrix, which con-
tains information about a number of solutions and
their size.

After creating and checking all monomial realisa-
tions, Function 5 creates all possible combinations of
polynomial realisations. Each possible combination is
assigned to a separate CUDA kernel on GPU for par-

Function 5 createDigraphs
Parameters: , , , , ,

Output: Set of matrices , , , for each realisation
and information if the realisation is proper

1: Determine a number of possible variants of placement
of each monomial, as ;

2: [] ∗ [],

where
[] ([][] [][])

;
3: Create , and matrices;

×
…

⋮ ⋮ ⋱ ⋮
…

;

× … ; for = 1 to ;
4: Fill matrices with data about arcs between sources

and graph vertices;
5: Allocate and transfer data to GPU;
6: (, , ,

, , , , ,
);

7: Transfer data from GPU;
8: Synchronisation;
9: () check for every realisation where

;

allel computation. As each monomial is realised on a
sub-graph, for sub-graphswith the size lower than the
size of polynomial graph there are different possible
variants of placement of the monomial (as explained
in Remark 2), so the total number of kernels needed
is a product of the products of the number of mono-
mial realisations and variants of placement of mono-
mial. Each kernel is assigned to its own information
about numbers of monomial realisations and variants
through kernel grid parameters, because of GPUmem-
ory allocation and sharing features.

Remark 2 Aside from a number of possible combina-
tions of monomial realisations (which are stored in the
𝑑𝑎𝑡𝑎 and 𝑙𝑒𝑔𝑒𝑛𝑑 matrices) there is a number of vari-
ants of possible adding sub-digraphs. First monomial of
the same size as the size of digraphs representing poly-
nomial realisation will always have only 1 variant, as
each other variant can be obtained by re enumerating
vertices. For each other monomial realisation, there is a
number of variants represented by the equation

𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 = (𝑚 − 𝑖), (6)

where: 𝑛 is the size of sub-graph, and 𝑚 is the size of
polynomial digraphs realisation.

Example 1 1-vertex sub-graph added to 5-vertex di-
graphs will have 5 variants (as the only possibilities are
placing the 1-cycle on one of ive vertices of digraphs),
while 3-vertex sub-graphwill have 60 variants (5⋅4⋅3).

First part of kernel ills 𝐀 ,𝐀 matrices with con-
nections between vertices in digraphs in such a way

41

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

Function 6 createSolutionKernel - Part One
Parameters: , , , ,

, , , ,
Output: Each kernel returns matrices , for a given

realisation , along with information if realisation is
proper

1: Realisation number vector and matrix of variants
are assigned to each kernel;

2: Largest monomial is chosen from based on
[];

3: for to do
4: = [[][]][];
5: if () then
6: _
7: else
8: _
9: [][_] ;

10: [] ;
11: for to do
12:
13: for to [][] do
14: // stores size of all monomials
15: = [][] ;
16: = [][]
17: [][]
18: if ([][]) then
19: _ [][]
20: else
21: _ [][]
22: [][_] ;
23: [] ;
24: for to do
25: if ([]) then
26: [] ;
27: for to do
28: for to do

29: [][] [][]

30: ← ();

31: if ([]) then

32: print There is no common part of digraphs
33: return , ;
34: BREAK;

that each 1D digraph is represented by 𝐴 matrix for
a given colour. Then matrix 𝐏 is created as a sum of
𝐀 and 𝐀 matrices as it represents all connections in
digraphs and using it instead of 𝐀matrices in the lat-
ter part of the algorithm (second part of Function 6)
allows formuch faster computation of a number of ex-
isting cycles. Also, the function checks intersection of
disjoint unions of sub-graphs creating digraphs and all
realisations where intersection is ∅ are improper.

Function 𝑡𝑒𝑠𝑡𝐶𝑦𝑐𝑙𝑒𝑠𝐾𝑒𝑟𝑛𝑒𝑙(𝑃) in line 30 is used
to create in a parallel way all needed matrices 𝑄
presented in Function 6 (part two) line 17. Matrices
𝑄 are created by removing from square matrix 𝐏
(representing all connection in digraphs, regardless of
colour) all rows and columns with the exception of
𝑖 -th, …, 𝑖 -th, where 𝑛 ≤ 𝑠𝑖𝑧𝑒, 𝑖 < 𝑖 + 1;𝑚 =
1,… , 𝑛 − 1.

Function 6 is executed in a parallel way – each ker-
nel calculates one realisation and one of variants that
are assigned through kernel grid addressing as pre-
sented in [17] allowing fast access to shared mem-
ory features of GPU, consistent address pool and easy
translation between nD matrices (used by CPU) and
1D vectors (used by GPU). Each kernel is assigned to
its own realisation vector𝑅which consists of numbers
of chosen realisations for each monomial.

Example 2 Let’s assume that for tested polynomial

𝑑(𝑧 , 𝑧 , 𝑧) = 1 − 𝑧 𝑧 𝑧 − 𝑧 𝑧 𝑧 −
𝑧 𝑧 − 𝑧

𝑑𝑎𝑡𝑎 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 2 3
1 1 3 2
1 2 1 3
1 2 3
1 3 2
1 2
3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and 𝑙𝑒𝑔𝑒𝑛𝑑 =
⎡
⎢
⎢
⎣

1 3 4
4 5 3
6 6 2
7 7 1

⎤
⎥
⎥
⎦
,

then irst kernel will be assigned to realisation vector
in form 𝑅 = 0 0 0 0 ; (𝑛 + 1)-th kernel, where 𝑛 is
number of variants possible, will be assigned realisation
vector𝑅 = 0 1 0 0 ; (2𝑛+1)-th kernelwill be assigned
𝑅 = 1 0 0 0 , …, and inally (5𝑛 + 1)-th kernel will be
assigned 𝑅 = 2 1 0 0 . In this example, 3-rd and 4-th
positions in 𝑅 vector do not change, as there is only one
possible realisation for those monomials.

Each kernel has also its own vector 𝑉, which stores
positions of vertices for variants of monomial realisa-
tions.

Example 3 Continuing with the polynomial from Ex-
ample 2, we have 1 variant for irst monomial (as ex-
plained earlier in Remark 2) and for next monomials
24, 12 and 4 variants (according to equation (6)). In this
case, 6 912 kernelswill be used (6 realisations ⋅24⋅12⋅4)
and for one of sample kernels vector𝑉 presented asma-
trix will take the form:

𝑉 =
3 2 1
3 1
2

in this case, the second monomial is represented by arcs
between vertices 3-2, 2-1, 1-3. The third monomial is
represented by arcs between 3-1 and 1-3 and the fourth
monomial is represented by arc 2-2. All arc colours are
determined by information from the 𝑑𝑎𝑡𝑎 matrix cho-
sen by the realisation vector.

Element 𝑝 , ∈ 𝐏 represents the number of differ-
ent arcs beginning in vertex 𝑖 and ending in vertex 𝑗.
The algorithm checks if the number of n-vertex cycles
in realisation is proper for the characteristic polyno-
mial. It starts with shorter cycles irst, because it is
faster, and if the algorithm inds even one additional
cycle, it means that the realisation is not valid and
then kernel stops working and frees memory. For 1-
vertex (line 2) and 2-vertex cycles (line 9), there are

42

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

Function 7 createSolutionKernel - Part Two
1: // Realisation is proper only if the number of cycles is

the same for digraphs and the characteristic polynomial

2: if ([,]! []) then

3: print Number of 1-vertex cycles is incorrect
4: return , ;
5: BREAK;
6: ;
7: for all , ∈ [, , … ,], where do

8: // ,
, ,
, ,

;
9: (, ∗ ,);

10: if (! []) then
11: print Number of 2-vertex cycles is incorrect
12: return , ;
13: BREAK;
14: for to () do
15: = 0;
16: for all , … , where , ;

, … , do

17: // ×
⎡
⎢
⎢
⎣

, , … ,
, , … ,
⋮ ⋮ ⋮ ⋮
, , … ,

⎤
⎥
⎥
⎦
;

//All possible n-cycles are checked and anum-
ber of existing ones is counted with the use of
recurrent Function 7

18: (, , ,);
19: if (! []) then
20: print Number of -vertex cycles is incorrect
21: return , ;
22: BREAK;

fast methods of checking the number of cycles, for 𝑛-
vertex (where 𝑛 ≥ 3) cycles Function 7 is recurrently
executed to check all possible cycles and count their
sum. There are some additional constraints used to
speed up the algorithm, for example if any column is
empty, it means that every excision of 𝐏 containing
that column cannot have n-vertex cycles and can be
automatically discarded.

Function 8 countCycles
Parameters: , , ,
Output:
1: // ×() [, , … ,] and
2: ;
3: for to where ! , ∀ , … , do
4: ∗ , ;
5: if () then
6: BREAK;
7: if () then
8: = ∗ , ;
9: else

10: (, , ,);

Function 8 is used for counting fast the number of
cycles present in digraphs basing on matrices 𝑄 cre-
ated earlier. It is recurrently executed, so that all pos-
sible cycle combinations will be checked, and it re-
turns the sumof existing cycles, which is later checked

with the number of cycles in the characteristic poly-
nomial. If the number of cycles is different, it means
that adding sub-graphs created some additional cy-
cles, and realisation is improper and should be dis-
carded. If at any point the value of 𝑟𝑒𝑠𝑢𝑙𝑡 equals zero
(line 5), it means that one of the elements of the deter-
minant is zero and the inal value of the given deter-
minant will be zero (so there will be no cycle for this
combination), and there is no further need of checking
that possibility and the algorithm can move to check
for the next combination.

4. Problem Complexity and Algorithm Op mi-
sa on

Many graph problems (like graph orientation, cov-
erage, colouring, decomposition, disjunction, connec-
tion and inding both the shortest paths and cycles)
are proposed or proven as NP-complete or NP-hard
for 1D undirected graphs, sometimes even with con-
straints added [1]. It can be assumed, that for ar-
bitrary multi-dimensional digraphs, those tasks are
even more complex and time-consuming. As creat-
ing digraphs realisation for the characteristic poly-
nomial includes many operations that are considered
NP-complete or NP-hard problems, it is also a NP-hard
problem [22, 24]. It can be assumed that its computa-
tional complexity will be very high, as:
- it consists of set of NP-complete or NP-hard prob-
lems,

- proposed solution is based on operating on arbi-
trary two-dimensional digraphs, making it more
complicated than 1D undirected graphs,

- in [25] it is conjectured that for many NP-complete
problems (including NP-complete graph problems
and set coverage problems) there are no solutions
that are capable of solving the problem under expo-
nential time, and all well-known algorithms have at
least exponential computational complexity.

Because of the complexity of the proposed problem,
there is a constant need of optimisation – and for that,
it is needed to precisely identify complexity of each
part of the algorithm, onwhat elements it depends and
how the algorithm can be made faster.

4.1. Algorithm Op misa on
In the algorithm proposed in [21] irst optimisations
were performed in formof growth/prune steps,which
restrict number of solutions that are fully created and
tested and in creating ixed solution start, which re-
duces number of solutions created times, as can
be seen in equation (7). In [24] there was proposed a
set of modi ications that causes the algorithm to work
faster (better variant of ixed start, omitting prune
stepwhen not needed, and different calculation for 1D
monomials). In [22] further modi ications were pro-
posed in form of modi ication of creation of intersec-
tion set, removal of redundant variants before parallel
calculation and skipping the 1-arc cycles, that further
improved the speed of the algorithm and reduced the
complexity for the most complicated cases. Still, due

43

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

to the NP-hard complexity of the problem, the over-
all computational complexity of the algorithm wasn’t
lowered below factorial for 2D polynomials and lin-
earithmic for 1D polynomials.
4.2. Computa onal Complexity of the Growth/Prune

Part
The growth part of the algorithm (Functions 2 and 3),
in which possible solutions are created, is performed
in 𝑐 (𝑚−1) operations for eachmonomial in the char-
acteristic polynomial, where: 𝑐 - number of colours;
𝑚 - size of the monomial. This step creates a number
of solutions that form a multiset permutation repre-
sented by equation

𝑠 = 𝑚 − 1
(𝑥 − 1), 𝑥 , … , 𝑥 = (7)

= (𝑚 − 1)!
(𝑥 − 1)! 𝑥 !… 𝑥 ! ,

where 𝑥 represents a number of occurrences of 𝑖-th
colour in the monomial and 𝑥 + 𝑥 + … + 𝑥 = 𝑚. In
equation (7), decrementation of 𝑥 and 𝑚 represents
reduction of a number of the possible solutions by the
ixed irst choice in Function 2.

For optimisation purposes it is important to be
able to determine a number of solutions that are cre-
ated after the prune step of the algorithm, as it allows
us to prepare a number of kernels for each monomial
in advance and it is essential for full parallelism of the
algorithm.

Theorem 1 There exist

𝑝 = 𝑚 − 1
𝑥 , 𝑥 , … , 𝑥 = (𝑚 − 1)!

𝑥 ! 𝑥 !… 𝑥 ! , (8)

possible distinct digraphs solutions for givenmonomial,
where 𝑥 represents number of occurrences of 𝑖-th vari-
able in the monomial and 𝑥 + 𝑥 + … + 𝑥 = 𝑚.

Proof Number of distinct digraphs solutions is the
same problem as determination of arrangement of 𝑛
distinct objects along a ixed circle. As we have more
than one variable, it is a case of a multi-set permu-
tation which gives (𝑛!)/(𝑚 !𝑚 !…𝑚 !) solutions. As
the permutation is cyclic, 𝑛! is reduced to (𝑛 − 1)! as
the circle can be rotated [6].

Remark 3 Circle rotation used for digraphs represen-
tations of polynomials is synonymous with swapping
columns / rows of 𝐀 matrix that is used in the control
theory.

When we know the characteristic polynomial, we can
determine at the start of the algorithm the number
of solutions generated during the growth step (de-
scribed by equation (7)) and the number of solutions
generated after the prune step (described by equation
(8)) for each of themonomials.With such information,
we can compute different monomials that the charac-
teristic polynomial consists of simultaneously by as-
signing each to kernel block of the precalculated size

and preparing memory blocks for each of the inal so-
lutions, which can be calculated independently of oth-
ers, without incurring the synchronisation problem.

The prune step (Function 4), where redundant so-
lutions are removed, is based heavily on the number of
solutions that are being reduced. For each monomial,
it is performed in (𝑚 − 1)(𝑠 log 𝑠 + 𝑚) steps, where 𝑠
is determined as in equation (7). As the part for each
monomial can be run in a parallel way (as we can de-
termine the number of kernels), the algorithm needs

𝑐 (𝑚 − 1) + (𝑚 − 1)(𝑠 log 𝑠 + 𝑚) (9)
operations in case when enough kernels are available
for full parallelisation.

To estimate computational complexity, we should
assume theworst case scenario. In such a scenario, we
imply thatmonomials areof size𝑚 → 𝑉,where𝑉 is the
number of vertices in polynomial digraphs, andwe can
transform equation (9) into

(𝑉 − 1)(𝑐 + 𝑠 log 𝑠 + 𝑉). (10)

As can be seen in equation (10), there are two fac-
tors that can generate the largest computational ef-
fort: 𝑐 and 𝑠 log 𝑠. Both parts are maximised when
𝑐 = 𝑉 (there are as many colours in each monomial
as vertices in polynomial digraphs), but for such 𝑥 =
𝑥 = … = 𝑥 = 1 scenarios prune step can be omit-
ted as presented in [24] and the algorithm needs only
𝑐 (𝑚 − 1) operations.

For the worst-case condition that is not a 𝑐 = 𝑚
scenario, we can assume that 𝑠 → (𝑉 − 1)! and se-
quential part’s computational complexity is factorial
and can be presented as 𝐓(𝐕) = 𝐎(𝑉!) in big O nota-
tion.
4.3. Computa onal Complexity of Digraph Crea on Part
Digraph creation part of the algorithm is executed on

(𝑚 − 1)!
𝑥 ! 𝑥 !… 𝑥 ! ⋅

𝑉!
(𝑉 − 𝑚)! (11)

kernels, each performing

(𝑉(𝑚 + 𝑉) +𝑚 log𝑚) + 𝑉 + 𝑉log𝑉 (12)

operations. In the worst case scenario, 𝑚 → 𝑉 and
equation (12) can be presented as

(2𝑛 + 1)𝑉 + 𝑛𝑉 log𝑉 + 𝑉log𝑉 , (13)

whichmakes parallel part’s computational complexity
𝐓(𝐕) = 𝐎(𝑉log𝑉) and makes the part of algorithm
solvable in linearithmic time, if there are enough ker-
nels available.
4.4. Comparison with Other Algorithms

Using proposed algorithm we can determine all
possible multi-dimensional digraph structures that
satisfy the characteristic polynomial (3). The number

44

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

Fig. 2. Poten al number of solu ons of the polynomial 𝑧 𝑧 … 𝑧 + 𝑧 / 𝑧 / …𝑧 / + 𝑧 + 𝑧 +⋯+ 𝑧

Fig. 3. Number of opera ons performed for the polynomial 𝑧 𝑧 … 𝑧 + 𝑧 / 𝑧 / …𝑧 / + 𝑧 + 𝑧 +⋯+ 𝑧 with use
of Tesla C2050 GPU with 10 parallel threads

of the solution is bigger with the size of the character-
istic polynomial and number of the variables. Let be
given the polynomial 𝑧 𝑧 … 𝑧 + 𝑧 / 𝑧 / …𝑧 / +
𝑧 + 𝑧 + ⋅ + 𝑧 where: 𝑛 is the power of the poly-
nomial (𝑛 = 1, 2, … , 10); 𝑐 is the number of colour
(𝑐 = 1, 2, 3). In the Figure 2, we have presented a num-
ber of the possible digraph structure. For example, if
we have a polynomial in the form:
- 𝑧 + 𝑧 + 𝑧 we have 120 possible digraphs struc-
tures;

- 𝑧 𝑧 +𝑧 𝑧 +𝑧 +𝑧 , we have 29, 506, 498, 560 pos-
sible digraphs structures;

- 𝑧 𝑧 𝑧 +𝑧 𝑧 𝑧 +𝑧 +𝑧 +𝑧 , we have 1.83361492⋅
10 possible digraphs structures.

The number of the possible digraph structures is
growing very fast as we can see in Figure 2.

In the Figure 3, we see, that the algorithm for de-
terminationof all possible digraphs representations of
the characteristic polynomial is performed in a larger
number of operations. The number of operations de-
pends onmaximal power of the characteristic polyno-
mial and number of colours. For example if we have
the polynomial that:
- consist of one variable in the following form 𝑧 +𝑧 +
𝑧 , then we must make about 1000 operations;

- consist of two variables in the following form 𝑧 𝑧 +
𝑧 𝑧 + 𝑧 +𝑧 , then wemust make 1.97 ⋅ 10 oper-
ations;

- consist of three variables in the following form
𝑧 𝑧 𝑧 + 𝑧 𝑧 𝑧 + 𝑧 + 𝑧 + 𝑧 , then wemust make
1.05 ⋅ 10 operations.

Tab. 1. Number of the digraph structures and
opera ons

Characteristic Digraph Number of
polynomial structures operations

, , , . ⋅
. ⋅ . ⋅

Presented in the Table 1 numbers of operations
were performed using computer with use of graphic
card Tesla C2050 with 10 parallel threads.

In Table 2, we presented a potential and real num-
ber of digraph structures for examples considered in
the state-of-the-art papers: [4, 26, 29, 38–40]. Poten-
tial solutions hold the solutions that can be created
by the algorithm. It should be noted that the potential
and real solutions does not contain realisations that
we can receive by re-encumbering the vertices in the
digraphs. This operation is very simple, but it is not
included in the algorithm, as it leads to unnecessary
operations and can be obtained by transposition of 𝐀
matrices after the algorithm is inished.

45

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

Tab. 2. Poten al and real number of the digraph structures

Characteristic Polynomial Grow Prune Solutions
Potential Real

()
()

()
() ()

()
()

()

Examples from: () [39, pp. 634-635]. () [40, pp. 1463]. () [40, pp. 1461]. () [38, pp. III-292]. () [39, pp. 637]. () [26, pp. 636]. () [29, pp. 6-7]. () [4, pp. 207].

Tab. 3. Comparison the size of the realisa on and the number of the solu ons

Characteristic Polynomial
Size Solutions Proposed

(×) (number) algorithm
Size Solutions

()
()

()
() ()

()
() 4

() 4

Examples from: () [39, pp. 634-635]. () [40, pp. 1463]. () [40, pp. 1461]. () [38, pp. III-292]. () [39, pp. 637]. () [26, pp. 636]. () [29, pp. 6-7]. () [4, pp. 207].

In Table 3, we presented the comparison of the
size of the realisation and the number of the solutions
for the examples presented in the papers considered
in Table 2. After looking at the table, we can say that
the algorithm proposed in this paper gives more real-
isations and additionally all of them are the minimal
among all possible and thus can be proven as supe-
rior on grounds of achieved solutions to other state-of-
the-art methods. In Table 3 the values marked by red
colour are those that give a better results compared to
the methods described in the state-of-the art papers.

5. Numerical Example
Let us consider the following example. For the

given characteristic polynomial

𝑑(𝑧 , 𝑧) = 1 − 𝑧 𝑧 − 𝑧 𝑧 − 𝑧 (14)

determine all possible realisations of the state matri-
ces 𝐀 and 𝐀 using digraph theory and GPGPU com-
puting method. To solve this problem, we use the par-
allel algorithm presented in Section 3.

In the irst step, wemust write the following initial
conditions: number of colours in digraphs: 𝑐𝑜𝑙𝑜𝑢𝑟𝑠 =
2; monomials:𝑀 = 𝑧 𝑧 ,𝑀 = 𝑧 𝑧 and𝑀 =
𝑧 .

Figure 4 presents algorithm structure used to
determine characteristic polynomial realisation de-
scribed by the equation (14). The algorithm starts
from function 𝑀𝑎𝑖𝑛() in which monomials in the fol-

lowing form are constructed:

𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠 =
⎧
⎪
⎨
⎪
⎩

[1] [1] = 2
[1] [2] = 2
[2] [1] = 1
[2] [2] = 1
[3] [1] = 1

⎫
⎪
⎬
⎪
⎭

.

In the next step for the irst monomial 𝑀 =
𝑧 𝑧 from function 𝑀𝑎𝑖𝑛() is starting the function
𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑉𝑒𝑟𝑡𝑒𝑥𝑆𝑡𝑎𝑟𝑡() (see box 𝑀𝑜𝑛 = 1 and
𝑆𝑡𝑎𝑟𝑡 in the Figure 4). In this function, we write the
following initial conditions:

𝑠𝑖𝑧𝑒 = 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[1][1] + 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[1][2] = 4;

𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠2 = [1] = 2
[2] = 2 ; 𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠[1] = 1.

Then from function 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑉𝑒𝑟𝑡𝑒𝑥𝑆𝑡𝑎𝑟𝑡() re-
current function𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑉𝑒𝑟𝑡𝑒𝑥() (named 𝑉𝑒𝑟𝑡𝑒𝑥
in latter part of the paper) is started. After this stepwe
obtain all possible combinations of the 𝑀 monomial
realisations for given 𝑠𝑖𝑧𝑒 = 4 and number of colours
𝑐𝑜𝑙𝑜𝑢𝑟 = 2. In the considered example, we have:
- 𝑉𝑒𝑟𝑡𝑒𝑥(1) – for 𝑖 = 1, 𝑗 = 1 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[1] =
0; for 𝑖 = 1, 𝑗 = 2 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[2] = 2;
𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠[2] = 1.

- 𝑉𝑒𝑟𝑡𝑒𝑥(2) – for 𝑖 = 2, 𝑗 = 1 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[1] =
0; for 𝑖 = 2, 𝑗 = 2 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[2] = 1;
𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠[3] = 2.

- 𝑉𝑒𝑟𝑡𝑒𝑥(3) – for 𝑖 = 2, 𝑗 = 1 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[1] =
0; for 𝑖 = 2, 𝑗 = 2 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[2] = 0;
𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠[4] = 2.

46

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

Main

LoadPolynomial()
Mon=1

Start
Vertex(1)

Vertex(2)
Vertex(3)

Vertex(4)
Vertex(5)
Vertex(6)

Prune
Mon=2

Start
Vertex(1)

Prune
Mon=3

Start
Prune

CreateDigraph()

K1/1
K1/2
K1/3

…
…
…

K3/1
K3/2
K3/3

…
…
…

K48/1
K48/2
K48/3

FINISH

i=1
i=2

i=2
i=1
i=2

i=2

EXECUTION
TIM

E

Fig. 4. Workings of the algorithm for example presented in Sec on 5

In this moment, the condition 𝑣𝑒𝑟𝑡𝑒𝑥!= 𝑠𝑖𝑧𝑒 is not
met, and we write the irst solution in the form:
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[1] = 1 1 2 2 . In the next step, we jump to
function 𝑉𝑒𝑟𝑡𝑒𝑥(1) and grow index 𝑖 to 2.
- 𝑉𝑒𝑟𝑡𝑒𝑥(1) – for 𝑖 = 2, 𝑗 = 1 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[1] =
1; for 𝑖 = 2, 𝑗 = 2 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[2] = 1;
𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠[2] = 2.

- 𝑉𝑒𝑟𝑡𝑒𝑥(4) – for 𝑖 = 1, 𝑗 = 1 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[1] =
0; for 𝑖 = 1, 𝑗 = 2 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[2] = 1;
𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠[3] = 1.

- 𝑉𝑒𝑟𝑡𝑒𝑥(5) – for 𝑖 = 2, 𝑗 = 1 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[1] =
0; for 𝑖 = 2, 𝑗 = 2 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[2] = 0;
𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠[4] = 2.

As 𝑣𝑒𝑟𝑡𝑒𝑥!= 𝑠𝑖𝑧𝑒 is not met, we write the second so-
lution in the form: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[2] = 1 2 1 2 and jump
to function 𝑉𝑒𝑟𝑡𝑒𝑥(4)with index 𝑖 = 2.
- 𝑉𝑒𝑟𝑡𝑒𝑥(4) – for 𝑖 = 2, 𝑗 = 1 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[1] =
1; for 𝑖 = 2, 𝑗 = 2 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[2] = 0;
𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠[3] = 2.

- 𝑉𝑒𝑟𝑡𝑒𝑥(6) – for 𝑖 = 1, 𝑗 = 1 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[1] =
0; for 𝑖 = 2, 𝑗 = 2 → 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠[2] = 0;
𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑠[4] = 1.

As again 𝑣𝑒𝑟𝑡𝑒𝑥!= 𝑠𝑖𝑧𝑒 is not met, third solution
takes the form: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[3] = 1 2 2 1 and inal data
matrix takes the form:

𝑑𝑎𝑡𝑎 =
1 1 2 2
1 2 1 2
1 2 2 1

. (15)

In this moment, we have inished the function
𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑉𝑒𝑟𝑡𝑒𝑥(), and we return to func-
tion 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑉𝑒𝑟𝑡𝑒𝑥𝑆𝑡𝑎𝑟𝑡() and then to
function 𝑚𝑎𝑖𝑛(), from which we start function
𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑉𝑒𝑟𝑡𝑒𝑥𝑃𝑟𝑢𝑛𝑒(). In this function, we write
the following initial conditions:
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = 3; 𝑙𝑒𝑔𝑒𝑛𝑑[1][1] = 1; 𝑠𝑜𝑙 =
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑙𝑒𝑔𝑒𝑛𝑑[1][1] + 1 = 3 − 1 + 1 = 3;
Determine 𝑠ℎ𝑖𝑓𝑡: 𝑠ℎ𝑖𝑓𝑡 = 𝑠𝑖𝑧𝑒 − 1 = 4 − 1 = 3.
Determine ℎ𝑎𝑠ℎ for datamatrix (15) using equation
(5):

ℎ𝑎𝑠ℎ =
1 ⋅ 2 + 1 ⋅ 2 + 2 ⋅ 2 + 2 ⋅ 2
1 ⋅ 2 + 1 ⋅ 2 + 1 ⋅ 2 + 2 ⋅ 2
1 ⋅ 2 + 2 ⋅ 2 + 2 ⋅ 2 + 1 ⋅ 2

=
54
50
42

.

In the next step, we create ℎ𝑎𝑠ℎ2 for data matrix (15)
shifted by 𝑥 positions. We obtain:
- for 𝑥 = 1we have:

𝑠ℎ𝑖𝑓𝑡(𝑥 = 1) =
1 1 2 2 1 1 2
1 2 1 2 1 2 1
1 2 2 1 1 2 2

⇒ (16)

⇒ ℎ𝑎𝑠ℎ2 =
42
38
36

;

(a) for 𝑖 = 2, 𝑗 = 1, we compare ℎ𝑎𝑠ℎ(2) with
ℎ𝑎𝑠ℎ2(1). As 50!= 40we compare the next pair.

47

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

(b) for 𝑖 = 2, 𝑗 = 2, we compare ℎ𝑎𝑠ℎ(2) with
ℎ𝑎𝑠ℎ2(2). As 50!= 38we compare the next pair.

(c) for 𝑖 = 3, 𝑗 = 1, we compare ℎ𝑎𝑠ℎ(3) with
ℎ𝑎𝑠ℎ2(1). In this situation 42 == 42; therefore
we set 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 2 and 𝑟𝑒𝑚𝑜𝑣𝑎𝑙𝑠 = 1 and
change ℎ𝑎𝑠ℎ and 𝑑𝑎𝑡𝑎 into the following:

ℎ𝑎𝑠ℎ =
54
50
0

, 𝑑𝑎𝑡𝑎 =
1 1 2 2
1 2 1 2
1̸ 2̸ 2̸ 1̸

.

- for 𝑥 = 2, we have:

𝑠ℎ𝑖𝑓𝑡(𝑥 = 2) =
1 1 2 2 1 1 2
1 2 1 2 1 2 1
1 2 2 1 1 2 2

⇒

(17)

⇒ ℎ𝑎𝑠ℎ2 =
36
50
48

(a) for 𝑖 = 2, 𝑗 = 1, we compare ℎ𝑎𝑠ℎ(2) with
ℎ𝑎𝑠ℎ2(1).As 50!= 36we compare the next pair.

(b) for 𝑖 = 2, 𝑗 = 2, we compare ℎ𝑎𝑠ℎ(2) with
ℎ𝑎𝑠ℎ2(2). As 50 == 50 we set 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 and
𝑟𝑒𝑚𝑜𝑣𝑎𝑙𝑠 = 2 and change ℎ𝑎𝑠ℎ and 𝑑𝑎𝑡𝑎 into:

ℎ𝑎𝑠ℎ =
54
0
0

, 𝑑𝑎𝑡𝑎 =
1 1 2 2
1̸ 2̸ 1̸ 2̸
1̸ 2̸ 2̸ 1̸

.

Finally, we write 𝑑𝑎𝑡𝑎 and 𝑙𝑒𝑔𝑒𝑛𝑑 which contain in-
formation about realisation in the following form:

𝑑𝑎𝑡𝑎 = 1 1 2 2
𝑙𝑒𝑔𝑒𝑛𝑑[𝑚𝑜𝑛][2] = 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⇒ 𝑙𝑒𝑔𝑒𝑛𝑑[1][2] = 1
𝑙𝑒𝑔𝑒𝑛𝑑[𝑚𝑜𝑛][3] = 𝑠𝑖𝑧𝑒 ⇒ 𝑙𝑒𝑔𝑒𝑛𝑑[1][3] = 4.

Now we break function 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑉𝑒𝑟𝑡𝑒𝑥𝑃𝑟𝑢𝑛𝑒(),
andwe comeback to function𝑀𝑎𝑖𝑛(). In the sameway
we follow with monomial 𝑀 and 𝑀 . Finally, we ob-
tain matrix 𝑑𝑎𝑡𝑎 and matrix 𝑙𝑒𝑔𝑒𝑛𝑑 in the form:

𝑑𝑎𝑡𝑎 =
1 1 2 2
1 2
1

, 𝑙𝑒𝑔𝑒𝑛𝑑 =
1 1 4
2 2 2
3 3 1

.

In this moment, we start function
𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑔𝑟𝑎𝑝ℎ𝑠() which creates all possible combi-
nations of polynomial realisation. In this function, we
write the following initial conditions:
1) Determine number of possible variants (6) of

placement of each monomial as 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠[𝑚𝑜𝑛]:
- For themonomial𝑀 , we have 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠[1] = 1;
corresponding digraph is presented in Figure 5;

- For the monomial 𝑀 , we have 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠[2] =
12; Digraph starting from the irst vertex corre-
sponding to monomial𝑀 is presented in Figure
6. In this same way, we can draw nine remain-
ing digraphs starting from the second, third and
fourth vertex respectively.

Fig. 5. Two-dimensional digraphs corresponding to
monomial𝑀

(a)

(b)

(c)

Fig. 6. Two-dimensional digraphs corresponding to
monomial𝑀

(a)

(b)

(c)

(d)

Fig. 7. Two-dimensional digraphs corresponding to
monomial𝑀

- For themonomial𝑀 , we have 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠[3] = 4;
corresponding digraph is presented in Figure 7

2) The number of vertices of digraphs for polyno-
mial realisation is equal to the size of maximal di-
graphs for monomial realisations, in this example
𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 = 4, the size of digraphs for𝑀 ;

3) Determine number of kernels needed for
computation:𝑘𝑒𝑟𝑛𝑒𝑙𝑠 = ∏ 𝑠𝑜𝑙[𝑚𝑜𝑛] ⋅
𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠[𝑚𝑜𝑛] = (1 ⋅ 1) ⋅ (1 ⋅ 12) ⋅ (1 ⋅ 4) = 48;

4) Create 𝐀 , 𝐀 , 𝐁 and 𝐁 zeros matrices.
At this moment, we can: create digraphs as a combi-
nation each of the monomial realisation, write matrix
𝐀 , 𝐀 , 𝐏, write 𝑐𝑦𝑐𝑙𝑒𝑠 vector and 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 vec-
tor. For example:
- For the 𝑘𝑒𝑟𝑛𝑒𝑙[1], we take the irst realisation of the
monomial 𝑀 (Figure 5), the irst realisation of the
monomial𝑀 (Figure 6a) and the irst realisation of
the monomial𝑀 (Figure 7a). Digraph correspond-

48

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

ing to 𝑘𝑒𝑟𝑛𝑒𝑙[1] is presented in Figure 8.

Fig. 8. Two-dimensional digraphs corresponding to
𝑘𝑒𝑟𝑛𝑒𝑙[1]

⎡
⎢
⎢
⎣

1 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0

⎤
⎥
⎥
⎦

𝐀

,
⎡
⎢
⎢
⎣

0 1 0 1
0 0 0 0
0 0 0 0
0 0 1 0

⎤
⎥
⎥
⎦

𝐀

,
⎡
⎢
⎢
⎣

1 1 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥
⎥
⎦

𝐏

, (18)

𝑐𝑦𝑐𝑙𝑒𝑠 = 1 1 0 1 , 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 1 0 0 0 .

In this situation, we have a common part of mono-
mial digraphs (vertex 𝑣), and we can assume
that 𝑘𝑒𝑟𝑛𝑒𝑙[1] is one of possible realisations of
characteristic polynomial.

- For the 𝑘𝑒𝑟𝑛𝑒𝑙[3], we take the irst realisation of the
monomial 𝑀 (Figure 5), the irst realisation of the
monomial𝑀 (Figure 6a) and the third realisation of
the monomial 𝑀 (Figure 7c). Digraph correspond-
ing to 𝑘𝑒𝑟𝑛𝑒𝑙[3] is presented in Figure 9.

Fig. 9. Two-dimensional digraphs corresponding to
𝑘𝑒𝑟𝑛𝑒𝑙[3]

⎡
⎢
⎢
⎣

0 0 0 0
1 0 0 0
0 1 1 0
0 0 0 0

⎤
⎥
⎥
⎦

𝐀

,
⎡
⎢
⎢
⎣

0 1 0 1
0 0 0 0
0 0 0 0
0 0 1 0

⎤
⎥
⎥
⎦

𝐀

,
⎡
⎢
⎢
⎣

0 1 0 1
1 0 0 0
0 1 1 0
0 0 1 0

⎤
⎥
⎥
⎦

𝐏

, (19)

𝑐𝑦𝑐𝑙𝑒𝑠 = 1 1 0 1 , 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 0 0 0 0 .

In this situation, we do not have a common part of
monomial digraphs and 𝑘𝑒𝑟𝑛𝑒𝑙[3] is not realisation
of characteristic polynomial.

- For the 𝑘𝑒𝑟𝑛𝑒𝑙[6], we take the irst realisation of the
monomial 𝑀 (Figure 5), the irst realisation of the
monomial𝑀 from the secondvertex and the second
realisation of themonomial𝑀 (Figure 7b). Digraph
corresponding to 𝑘𝑒𝑟𝑛𝑒𝑙[6] is presented in Figure
10.

Fig. 10. Two-dimensional digraphs corresponding to
𝑘𝑒𝑟𝑛𝑒𝑙[6]

⎡
⎢
⎢
⎣

0 1 0 0
1 1 0 0
0 1 0 0
0 0 0 0

⎤
⎥
⎥
⎦

𝐀

,
⎡
⎢
⎢
⎣

0 0 0 1
1 0 0 0
0 0 0 0
0 0 1 0

⎤
⎥
⎥
⎦

𝐀

,
⎡
⎢
⎢
⎣

0 1 0 1
2 1 0 0
0 1 0 0
0 0 1 0

⎤
⎥
⎥
⎦

𝐏

, (20)

𝑐𝑦𝑐𝑙𝑒𝑠 = 1 1 0 1 , 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 0 1 0 0 .

In this situation, we have common part of mono-
mial digraphs (vertex 𝑣), and we can assume that
𝑘𝑒𝑟𝑛𝑒𝑙[6] is one of possible realisations of the char-
acteristic polynomial.
In this same way, we determine the re-

maining kernels. In our example, we have
𝑘𝑒𝑟𝑛𝑒𝑙[1], … , 𝑘𝑒𝑟𝑛𝑒𝑙[48].

Using the second part of the function
𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐾𝑒𝑟𝑛𝑒𝑙() for all kernels which
have common part, we check the number of 𝑛-vertex
cycles in a characteristic polynomial realisation. At
the beginning, we check, number of cycles consisting
of one vertices, then two vertices, three vertices and
four vertices respectively. In our example, we will
check the number of cycles for:
1) Digraphs corresponding to 𝑘𝑒𝑟𝑛𝑒𝑙[1] are pre-

sented in Figure 8. Matrix 𝐏 and vector 𝑐𝑦𝑐𝑙𝑒𝑠 are
described by the equation (18).
- Check condition for simple cycle consisting of
one vertex – ∑ 𝑝 , = ∑ 𝑝 , = 1 =
𝑐𝑦𝑐𝑙𝑒𝑠[1];

- Check condition for simple cycle consisting of
two vertices (see Function 6 lines 7-9).

1 1
1 0

,

= 1; 1 0
0 0

,

= 0; 1 1
0 0

,

= 0;

0 0
1 0

,

= 0; 0 0
0 0

,

= 0; 0 0
1 0

,

= 0; (21)

𝑐𝑦𝑐𝑙𝑒𝑠[2] = 1 + 0 + 0 + 0 + 0 + 0 = 1

- Check condition for simple cycle consisting of
three vertices (see Function 6 lines 14-18).

000
100
010

= 0,
101
000
010

= 0,
121
100
000

= 0,
120
100
010

= 0

- Check condition for simple cycle consisting of
four vertices (see Function 6 lines 7-9).

𝑄 = 𝐏 =
⎡
⎢
⎢
⎣

1 2 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥
⎥
⎦
= 1, 𝑐𝑦𝑐𝑙𝑒𝑠[4] = 1

At this moment, we can say that digraphs pre-
sented in Figure 8 do not appear addition cycles.

49

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

2) Digraphs corresponding to 𝑘𝑒𝑟𝑛𝑒𝑙[6] are pre-
sented in Figure 10.Matrix𝐏 and vector 𝑐𝑦𝑐𝑙𝑒𝑠 are
described by the equation (20).
- Check condition for simple cycle consisting of
one vertex – ∑ 𝑝 , = ∑ 𝑝 , = 1 =
𝑐𝑦𝑐𝑙𝑒𝑠[1];

- Check condition for simple cycle consisting of
two vertices (see Function 6 lines 7-9).

0 1
2 1

,

= 2; 0 0
0 0

,

= 0; 0 1
0 0

,

= 0;

1 0
1 0

,

= 0; 1 0
0 0

,

= 0; 0 0
1 0

,

= 0; (22)

𝑐𝑦𝑐𝑙𝑒𝑠[2] = 2 + 0 + 0 + 0 + 0 + 0 = 2

This means that in digraph corresponding to
𝑘𝑒𝑟𝑛𝑒𝑙[6] (see Figure 10) additional cycle con-
sisting of two vertices appears, and digraph does
not satisfy the characteristic polynomial (14).

6. Concluding Remarks
The paper presents in-depth examination of the

parallel computer algorithm for inding a set of char-
acteristic polynomial realisations of dynamic system.
The algorithm is based on the multi-dimensional di-
graphs theory to allow creation of a set of solutions of
characteristic polynomial realisations instead of just
one solution – this is what makes the main difference
between the proposedmethod and other state-of-the-
art solutions. Moreover, the presented algorithm cre-
ated solutions that are always minimal in terms of
size of the state matrices. The algorithm gives as a re-
sult a set of realisations of characteristic polynomial,
both in the form of digraphs and state matrices repre-
sentation. Due to NP-hard complexity of the problem,
as digraphs-building methods used in the algorithm
are NP-complete or NP-hard problems, as presented
in Section 4, the algorithm needs to be paralleled us-
ing GPGPU (General-Purpose computing on Graphics
Processor Units) computation as it is impossible to se-
quentially check all needed solutions. Even for paral-
lel implementation the method is still time consum-
ing and of factorial computational complexity. The pa-
per presents optimisation of the algorithm, based on
mathematical principles of circular multi-set permu-
tations, that eliminates the problem with the worst-
case scenario of the basic version of the algorithm, re-
duces a number of unnecessary created potential so-
lutions (and thus complexity and working time of the
algorithm) both in growth and prune steps, allows for
parallel execution of both growth and prune steps and
simpli ies the algorithm workings for 1D monomials
and polynomials. Proposed modi ications greatly re-
duce time needed for candidate generation.

Further work, apart from optimisation, includes
extension of the algorithm to ind all possible solu-
tions (not only minimal), solve the realisation prob-
lem, reachability and controllability of systems using
the fast graph-based method. There is also an open

problem of the analysis of system dynamics for real-
isations on a different number of nodes in digraphs.

AUTHORS
Krzysztof Hryniów – Faculty of Electrical En-
gineering, Warsaw University of Technology,
Koszykowa 75, 00-662 Warsaw, Poland, e-mail:
Krzysztof.Hryniow@ee.pw.edu.pl.
Konrad Andrzej Markowski∗ – Faculty of Elec-
trical Engineering, Warsaw University of Tech-
nology, Koszykowa 75, 00-662 Warsaw, Poland,
e-mail: Konrad.Markowski@ee.pw.edu.pl, www:
http://nas.isep.pw.edu.pl.
∗Corresponding author

REFERENCES
[1] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algo-

rithms and Applications (2nd Edition), Springer-
Verlag: London, 2009.

[2] L. Benvenuti, L. Farina, “A tutorial on the positive
realization problem”, IEEE Transactions on Auto-
matic Control, vol. 49, no. 5, 2004, 651–664.

[3] A. Berman, M. Neumann, R. J. Stern, Nonnegative
Matrices in Dynamic Systems, Wiley: New York,
1989.

[4] M. Bisiacco, E. Fornasini, G. Marchesini, “Dy-
namic regulation of 2D systems: A state-space
approach”, Linear Algebra and Its Applications,
vol. 122–124, 1989, 195–218.

[5] T. Blyth, E. Robertson, Basic Linear Algebra (2nd
Edition), Springer: London, 2002.

[6] M. Bona, Combinatorics of Permutations(Second
Edition), Chapman Hall, CRC Press, 2012.

[7] R. Bru, C. Coll, S. Romero, E. Sanchez, “Reachabil-
ity indices of positive linear systems”, Electronic
Journal of Linear Algebra, vol. 11, 2004, 88–102.

[8] R. Bru, S. Romero-Vivo, E. Sanchez, “Reachability
indices od periodic positive systems via positive
shift-similarity”, Linear Algebra and Its Applica-
tions, vol. 429, 2008, 1288–1301.

[9] E. Fornasini, G. Marchesini, “State-space real-
ization theory of two-dimensional ilters”, IEEE
Trans, Autom. Contr., vol. 21, 1976, 481–491.

[10] E. Fornasini, M. E. Valcher, “Directed graphs, 2D
state models, and characteristic polynomials of
irreducible matrix pairs”, Linear Algebra and Its
Applications, vol. 263, 1997, 275–310.

[11] E. Fornasini,M. E. Valcher, “On the positive reach-
ability of 2D positive systems”, LCNIS, 2003,
297–304.

[12] E. Fornasini, M. E. Valcher, “Controllability and
reachability of 2Dpositive systems: a graph theo-
retic approach”, IEEE Transaction on Circuits and
Systems I, no. 52, 2005, 576–585.

[13] L. R. Foulds, Graph Theory Applications, Springer
Verlag, 1991.

[14] C. Godsil, G. Royle, Algebraic Graph Theory,
Springer Verlag, 2001.

50

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 3 2016

[15] S. Hong, T. Oguntebi, K. Olukotun, “Ef icient par-
allel graph exploration on multi-core CPU and
GPU”. In: Parallel Architectures and Compila-
tion Techniques (PACT), 2011 International Con-
ference on, 2011, 78–88.

[16] R.A.Horn, C. R. Johnson,Topics inMatrixAnalysis,
Cambridge Univ. Press, 1991.

[17] K. Hryniów, “Parallel pattern mining on Graph-
ics Processing Units”. In: Proceedings of 2013
14th International Carpathian Control Confer-
ence (ICCC), 2013, 134–139.

[18] K. Hryniów, K. A. Markowski, “Conditions for di-
graphs representation of the characteristic poly-
nomial”. In: Young Scientists Towards the Chal-
lenges of Modern Technology, 2014, 77–80.

[19] K. Hryniów, K. A. Markowski, “Parallel digraphs-
building algorithm for polynomial realisations”.
In: Proceedings of 2014 15th International
Carpathian Control Conference (ICCC), 2014,
174–179.

[20] K. Hryniów, K. A. Markowski, “Reachability in-
dex calculation by parallel digraphs-building”.
In: 19th International Conference on Methods
and Models in Automation and Robotics (MMAR),
Miedzyzdroje, Poland, September 2-5, 2014, 2014,
808–813.

[21] K. Hryniów, K. A. Markowski, “Digraphs-building
of complete set of minimal characteristic poly-
nomial realisations asmeans for solvingminimal
realisationproblemof nD systems”, International
Journal of Control, 2015, (Submitted to).

[22] K. Hryniów, K. A.Markowski, “Optimisation of di-
graphs creation for parallel algorithm for ind-
ing a complete set of solutions of characteristic
polynomial”. In: 20th International Conference on
Methods and Models in Automation and Robotics
(MMAR), 2015, 2015, 1139–1144.

[23] K. Hryniów, K. A. Markowski. “Classes of di-
graph structures corresponding to characteristic
polynomials”. In: R. Szewczyk, C. Zieliński, and
M. Kaliczyńska, eds., Challenges in Automation,
Robotics and Measurement Techniques, Advances
in Intelligent Systems and Computing, 329–339.
Springer International Publishing, 2015.

[24] K. Hryniów, K. A. Markowski. “Optimisation
of digraphs-based realisations for polynomials
of one and two variables”. In: R. Szewczyk,
C. Zieliński, and M. Kaliczyńska, eds., Progress in
Automation, Robotics and Measuring Techniques,
volume 350 of Advances in Intelligent Systems
and Computing, 73–83. Springer International
Publishing, 2015.

[25] R. Impagliazzo, R. Paturi, “On the complexity of
k-SAT”, Journal of Computer and System Sciences,
vol. 62, 2001, 367–375.

[26] T. Kaczorek, “Realization problem for general
model of two-dimensional linear systems”, Bul-
letin of the Polish Academy of Sciences, Technical
Sciences, vol. 35, no. 11–12, 1987, 633–637.

[27] T. Kaczorek, Positive 1D and 2D systems, Springer
Verlag: London, 2001.

[28] T. Kaczorek, “Positive realization for 2D systems
with delays”. In: Proceedings of 2007 Interna-
tional Workshop on Multidimensional (nD) Sys-
tems, 2007, 137 – 141.

[29] T. Kaczorek, “Positive realization of 2D general
model”, Logistyka, vol. nr 3, 2007, 1–13.

[30] T. Kaczorek, M. Busłowicz, “Minimal realization
problem for positive multivariable linear sys-
tems with delay”, Int. J. Appl. Math. Comput. Sci.,
no. 14(2), 2004, 181 – 187.

[31] T. Kaczorek, L. Sajewski, The Realization Problem
for Positive and Fractional Systems, Springer In-
ternational Publishing: Berlin, 2014.

[32] D. Luebke and G. Humphreys, “How GPUs work”,
IEEE Computer, vol. 40, 2007, 96–100.

[33] K. A. Markowski, “Determination of positive re-
alization of two dimensional systems using di-
graph theory and GPU computing method”. In:
International Symposiumon Theoretical Electri-
cal Engineering, 24th – 26th June 2013: Pilsen,
Czech Republic, 2013, II7–II8.

[34] K. A. Markowski, “Determination of Reachability
Index Set of Positive 2D System Using Digraph
Theory andGPUComputingMethod”. In: 18th In-
ternational Conference on Methods and Models in
Automation and Robotics (MMAR), Miedzyzdroje,
Poland, August 26-29, 2013, 2013, 705–710.

[35] K. A. Markowski, “Determination of minimal
realisation of one-dimensional continuous-time
fractional linear system”, International Journal of
Dynamics and Control, 2016 (Accepted).

[36] W. D. Wallis, A Beginner’s Guide to Graph Theory,
Biiokhäuser, 2007.

[37] L. Xu, H. Fan, Z. Lin, N. Bose, “A direct-
construction approach to multidimensional
realization and LFR uncertainty modeling”,
Multidimensional Systems and Signal Processing,
vol. 19, no. 3–4, 2008, 323–359.

[38] L. Xu, L.Wu, Q.Wu, Z. Lin, Y. Xiao, “Reduced-order
realization of Fornasini-Marchesinimodel for 2D
systems”. In: Circuits and Systems, 2004. ISCAS
’04. Proceedings of the 2004 International Sympo-
sium on, vol. 3, 2004, III–289–292.

[39] L. Xu, L. Wu, Q. Wu, Z. Lin, Y. Xiao, “On realization
of 2D discrete systems by Fornasini-Marchesini
model”, International Journal of Control, Automa-
tion, and Systems, vol. 4, no. 3, 2005, 631–639.

[40] L. Xu, Q. Wu, Z. Lin, Y. Xiao, Y. Anazawa, “Futher
results on realisation of 2D ilters by Fornasini-
Marchesini model”. In: 8th International Con-
ference on Control, Automation, Robotics and
Vision, Kunming, China, 6-9th December, 2004,
1460–1464.

51

	Introduction
	Notion
	2-D Systems
	Characteristic Polynomial
	Digraphs
	GPGPU

	Problem Statement
	State-of-the-art
	Proposed Solution

	Main Result
	Problem Complexity and Algorithm Optimisation
	Algorithm Optimisation
	Computational Complexity of the Growth/Prune Part
	Computational Complexity of Digraph Creation Part
	Comparison with Other Algorithms

	Numerical Example
	Concluding Remarks

