PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quartz enhanced photoacoustic spectroscopy based on an external cavity quantum cascade laser

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mid-infrared laser spectroscopy is a powerful analytical tool for trace gases detection. In this study, a spectroscopic system based on an external cavity quantum cascade laser (ECQCL) and quartz enhanced photoacoustic spectroscopy (QEPAS) was developed for volatile organic compounds (VOCs) measurements. Primary laboratory test on ethanol spectroscopy was investigated and compared with traditional direct absorption spectroscopy (DAS). Experimental results show that the proposed QEPAS is more sensitive than the conventional DAS method. In addition, the significant linear dependence of photoacoustic signal on sample pressures and laser operating parameters was observed.
Czasopismo
Rocznik
Strony
687--695
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Laser spectroscopy and sensing laboratory, Anhui University, 230601 Hefei, China
autor
  • Laser spectroscopy and sensing laboratory, Anhui University, 230601 Hefei, China
autor
  • Laser spectroscopy and sensing laboratory, Anhui University, 230601 Hefei, China
autor
  • Laser spectroscopy and sensing laboratory, Anhui University, 230601 Hefei, China
Bibliografia
  • [1] FAIST J., CAPASSO F., SIVCO D.L., SIRTORI C., HUTCHINSON A.L., CHO A.Y., Quantum cascade laser, Science 264(5158), 1994, pp. 553–555.
  • [2] GMACHL C., CAPASSO F., SIVCO D.L., CHO A.Y., Recent progress in quantum cascade lasers and applications, Reports on Progress in Physics 64(11), 2001, pp. 1533–1601.
  • [3] LI J.S., CHEN W., FISCHER H., Quantum cascade laser spectrometry techniques: a new trend in atmospheric chemistry, Applied Spectroscopy Reviews 48(7), 2013, pp. 523–559.
  • [4] JINGSONG LI, HAO DENG, JUAN SUN, BENLI YU, FISCHER H., Simultaneous atmospheric CO, N2O and H2O detection using a single quantum cascade laser sensor based on dual-spectroscopy techniques, Sensors and Actuators B: Chemical 231, 2016, pp. 723–732.
  • [5] HUGI A., TERAZZI R., BONETTI Y., WITTMANN A., FISCHER M., BECK M., FAIST J., GINI E., External cavity quantum cascade laser tunable from 7.6 to 11.4 μm, Applied Physics Letters 95(6), 2009, article ID 061103.
  • [6] BANDYOPADHYAY N, CHEN M, SENGUPTA S, SLIVKEN S., RAZEGHI M., Ultra-broadband quantum cascade laser, tunable over 760 cm–1, with balanced gain, Optics Express 23(16), 2015, pp. 21159–21164.
  • [7] BELL A.G., On the production and reproduction of sound by light, American Journal of Science 20(118), 1880, pp. 305–324.
  • [8] FRIEDT J.-M., CARRY E., Introduction to the quartz tuning fork, American Journal of Physics 75(5), 2007, pp. 415–422.
  • [9] KOSTEREV A.A., BAKHIRKIN YU.A., CURL R.F., TITTEL F.K., Quartz enhanced photoacoustic spectroscopy, Optics Letters 27(21), 2002, pp. 1902–1904.
  • [10] SHENG ZHOU, YANLING HAN, BINCHENG LI, Simultaneous detection of ethanol, ether and acetone by mid-infrared cavity ring-down spectroscopy at 3.8 μm, Applied Physics B 122, 2016, article ID 187.
  • [11] LEWICKI R., WYSOCKI G., KOSTEREV A.A., TITTEL F.K., QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm, Optics Express 15(12), 2007, pp. 7357–7366.
  • [12] KOSTEREV A.A., BUERKI P.R., DONG L., REED M., DAY T., TITTEL F.K., QEPAS detector for rapid spectral measurements, Applied Physics B 100(1), 2010, pp. 173–180.
  • [13] SHARPE S.W., JOHNSON T.J., SAMS R.L., CHU P.M., RHODERICK G.C., JOHNSON P.A., Gas-phase databases for quantitative infrared spectroscopy, Applied Spectroscopy 58(12), 2004, pp. 1452–1461.
  • [14] NADEZHDINSKII A., BEREZIN A., BUGOSLAVSKY YU., ERSHOV O., KUTNYAK V., Application of near-IR diode lasers for measurement of ethanol vapor, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 55(10), 1999, pp. 2049–2055.
  • [15] JUAN SUN, HAO DENG, NINGWU LIU, HONGLIANG WANG, BENLI YU, JINGSONG LI, Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser, Review of Scientific Instruments 87(12), 2016, article ID 123101.
  • [16] AOUST G., LEVY R., RAYBAUT M., GODARD A., MELKONIAN J.-M., LEFEBVRE M., Theoretical analysis of a resonant quartz-enhanced photoacoustic spectroscopy sensor, Applied Physics B 123, 2017, article ID 63.
  • [17] JINGSONG LI, HAO DENG, PENGFEI LI, BENLI YU, Real time infrared gas detection based on an adaptive Savitzky–Golay algorithm, Applied Physics B 120(2), 2015, pp. 207–216.
  • [18] HAO DENG, JUAN SUN, PENGFEI LI, YU LIU, BENLI YU, JINGSONG LI, Sensitive detection of acetylene by second derivative spectra with tunable diode laser absorption spectroscopy, Optica Applicata 46(3), 2016, pp. 353–363.
  • [19] IVASCU I.R., MATEI C.E., PATACHIA M., BRATU A.M., DUMITRAS D.C., CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2–10.8 μm, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 163, 2016, pp.115–119.
  • [20] LI J.S., YU B., FISCHER H., CHEN W., YALIN A.P., Contributed review: quantum cascade laser based photoacoustic detection of explosives, Review of Scientific Instruments 86(3), 2015, article ID 031501.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab5bf42c-e562-48c7-af42-995a342163d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.