PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

57Fe Mössbauer spectroscopy investigations of iron phase composition in fluidized beds from the ELCHO power plant in Chorzów, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
All-Polish Seminar on Mössbauer Spectroscopy OSSM 2016 (11th ; 19-22 June 2016 ; Radom-Turno, Poland)
Języki publikacji
EN
Abstrakty
EN
The study investigates the physical and chemical properties of fly ash and bottom ash from a power plant ELCHO in Chorzów, Poland. Coal combustion products generated in the process of combustion in circulating fluidized beds (CFBs) are considerably different from fly and bottom ashes obtained from dust furnaces and multi-layer ones. The composition of the iron-bearing phase in the waste of circulating fluidized bed combustion was determined using Mössbauer spectroscopy and X-ray powder diffraction (XRD) methods.
Słowa kluczowe
Czasopismo
Rocznik
Strony
101--107
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Institute of Physics, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice, Poland
  • Faculty of Earth Sciences, University of Silesia, 60 Będzińska Str., 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Stout, W., Daily, M., Nickeson, T., Svendsen, R., & Thompson, G. (1997). Agricultural uses of alkaline fluidized bed combustion ash: case studies. Fuel, 76, 767–769.
  • 2. Armesto, L., Bahillo, A., Cabanillas, A., & Otero, J. (2002). Combustion behaviour of rice husk in bubbling fluidized bed. Biomass Bioenerg., 23, 171–176.
  • 3. Glinicki, M., & Zielinski, M. (2008). Air void system in concrete containing circulating fluidized bed combustion fly ash. Mater. Struct., 41, 681–687.
  • 4. Shon, Ch. S., Mukhopadhyay, A. K., Saylak, D., Zollinger, D. G., & Mejeoumow, G. C. (2010). Potential use of stockpiled circulating fluidized bed combustion ashes in controlled low strength material (CLSM) mixture. Constr. Build. Mater., 24, 839–847.
  • 5. Koukouzas, N., Hãmãlãinen, J. Papanikolaou, A., Tourunen, T., & Jãntii, T. (2007). Mineralogical and elemental composition of fly ash from pilot scale fluidized bed combustion of lignite, bituminous coal, wood chips and their blends. Fuel, 86, 2186–2193.
  • 6. Koukouzas, N., Ward, C. R., Papanikolaou, D., Li, Z., & Ketikidis, C. (2009). Quantitative evaluation of minerals in fly ashes of biomass-coal mixture derived from circulating fluidized bed combustion technology. J. Hazard. Mater., 169, 100–107.
  • 7. Anthony, E. J., Berry, E. E., Blondin, J., Bulewicz, E. M., & Burwell, S. (2003). Advanced ash management technologies for CFBC ash. Waste Manage., 23, 506–513.
  • 8. Smith, K. R., Veranth, J. M., Lighty, J. S., & Aust, A. E. (1998). Mobilization of iron from urban particulates leads to generation of reactive oxygen species in vitro and induction of ferritin synthesis in human lung epithelial cells. Chem. Res. Toxicol., 11, 1494–1500.
  • 9. Solmon, F., Chuang, P. Y., Meskhidze, N., & Chem, Y. (2009). Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean. J. Geophys. Res., 114, D02305.
  • 10. Meskhidze, N., Chameides, W. L., Nenes, A., & Chen, G. (2003). Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity. Geophys. Res. Lett., 30(21), 2085(5pp.).
  • 11. Veranth, J. M., Smith, K. R., Hu, A. A., Lighty, J. S., & Aust, A. E. (2000). Mobilization of iron from coal fly ash was dependent upon the particle size and source of coal: Analysis of rates and mechanisms. Chem. Res. Toxicol., 13, 382–389.
  • 12. Veranth, J. M., Smith, K. R., Huggins, F., Hu, A. A., Lighty, J. S., & Aust, A. E. (2000). Mössbauer spectroscopy indicates that iron in an aluminosilicate glass phase is the source of the bioavailable iron from coal fly ash. Chem. Res. Toxicol., 13, 161–164.
  • 13. Szumiata, T., Brzózka, K., Górka, B., Gawroński, M., Gzik-Szumiata, M., Świetlik, R., & Trojanowska, M. (2014). Iron speciation in coal fly ashes – chemical and Mössbauer analysis. Hyperfi ne Interact., 226(1), 483–487.
  • 14. Jonczy, I., & Stanek, J. (2013). Phase composition of metallurgical slag studied by Mössbauer spectroscopy. Nukleonika, 58(1), 127–131.
  • 15. Roshan, L., & Sharma, S. D. (2003). Application of Mössbauer spectroscopy to study the effect of fly-ash in agriculture soil. Indian J. Pure Appl. Phys., 41, 145–148.
  • 16. Stevens, J. G., Khasanov, A. M., Miller, J. M., Pollak, H., & Li, Z. (2005). Mössbauer mineral handbook. Asheville, NC, USA: Mössbauer Effect Data Center, The University of North Carolina. Available from https://www.mtholyoke.edu/courses/mdyar/data/MineralHandbook.pdf.
  • 17. Waanders, F. B., Vinken, E., Mans, A., & Mulaba-Bafubiandi, A. F. (2003). Iron minerals in coal, weathered coal and coal ashes – SEM and Mössbauer results. Hyperfi ne Interact., 148, 21–29.
  • 18. Seung-Hyun, Cho, Jong-Ik, Yoo, Turley, A., Miller, C. A., Linak, W. P., Wendt, J., Huggins, F., & Gilmour, M. (2009). Relationships between composition and pulmonary toxicity of prototype particles from coal combustion and pyrolysis. Proceedings of the Combustion Institute, 32, 2717–2725.
  • 19. Haihan, Ch., Laskin, A., Baltrusaitis, J., Gorski, Ch., Scherer, M., & Grassian, V. (2012). Coal fly ash as a source of iron in atmospheric dust. Environmental Science Technologist, 46, 211–212.
  • 20. Oliweira, M., Waanders, F., Silva, L., Jasper, A., Sampaio, C., McHabe, D., Hatch, R., & Hower, J. (2011). A multi analytical approach to understand chemistry of Fe-minerals in fees coal and ashes. Coal Combustion and Gasification Products, 3, 51–62.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab54af61-db3a-4054-a134-30e75c82a960
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.