PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Performance of Electrocoagulation Process in Removing Organic and Nitrogenous Compounds from Landfill Leachate in a Three-Compartment Reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the effectiveness of the electrocoagulation (EC) process was evaluated based on the reduction of organic and nitrogenous contaminants in landfill leachate. A three-compartment electrochemical reactor as pre-treatment of stabilized landfill leachate was carried out ahead of biological treatment. The removal efficiencies of COD, BOD, ammonia, and nitrate were analyzed at pH 4, 6, and 8 with the current densities of 20.83 and 29.17 mA•cm–2. At pH 4, the highest removal of COD and NH4+ was obtained, i.e., in the range of 72–81% and 43–59%, respectively. The ratio of BOD5/COD was increased after EC, from initially 0.11 to 0.32 at pH 4. In addition, EC effectively removed humic substances in the leachate by targeting a large amount of high molecular weight humic substances, with around 103 kDa. However, the higher removal efficiency observed at higher current density leads to higher specific energy consumption. At a current density of 29.17 mA•cm–2, the specific energy consumption obtained in EC was around 10–17 Wh•g–1 COD and 99–148 Wh•g–1 NH4+. This could be decreased up to 50% at an applied current density of 20.83 mA•cm–2 with slightly lower efficiencies.
Rocznik
Strony
235--245
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
  • Research Centre for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
  • Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C
  • Research Centre for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
autor
  • Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C
  • Center for Environmental Risk Management, College of Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C.
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
  • Research Centre for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
Bibliografia
  • 1. Amarine M., Lekhlif B., Sinan M., El Rharras A., Echaabi J. 2020. Treatment of nitrate-rich groundwater using electrocoagulation with aluminum anodes. Groundw. Sustain. Dev., 11, 100371. https://doi.org/10.1016/j.gsd.2020.100371
  • 2. American Public Health Association. 2005. Standard Methods for The Examination of Water and Wastewater, 21st edn. American Public Health Association, American Water Works Associations, Water Environment Federation, Washington D.C., USA
  • 3. Apaydin Ö., Özkan E. 2020. Landfill leachate treatment with electrocoagulation: Optimization by using Taguchi method. Desalin. Water Treat., 173, 65–76. https://doi.org/10.5004/dwt.2020.24719
  • 4. Bagastyo A.Y., Ayu A.P. Barakwan R.A., Trihadiningrum Y. 2020. Recovery of alum sludge by using membrane-based electrochemical process. J. Ecol. Eng., 21(6), 237–247. https://doi.org/10.12911/22998993/124076
  • 5. Bagastyo A.Y., Sari P.P.I., Direstiyani L.C. 2021. Effect of chloride ions on the simultaneous electrodialysis and electrochemical oxidation of mature landfill leachate. Environ. Sci. Pollut. Res., 28, 63646–63660. https://doi.org/10.1007/s11356-020-11519-z
  • 6. Bakry S.A., Matta M.E., Zaher K. 2018. Electrocoagulation process performance in removal of TOC, TDS, and turbidity from surface water. Desalin. Water Treat., 129,127–138. https://doi.org/10.5004/dwt.2018.23070
  • 7. Bouhezila F., Hariti M., Lounici H., Mameri N. 2011. Treatment of the OUED SMAR town landfill leachate by an electrochemical reactor. Desalination, 280, 347–353. https://doi.org/10.1016/j.desal.2011.07.032
  • 8. Cañizares P., Martínez F., Lobato J., Rodrigo M.A. 2006. Electrochemically assisted coagulation of wastes polluted with eriochrome black T. Ind. Eng. Chem. Res., 45, 3474–3480. https://doi.org/10.1021/ie051432r
  • 9. Cotillas S., Llanos J., Cañizares P., Mateo S., Rodrigo M.A. 2013. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation. Water Res., 47, 1741–1750. https://doi.org/10.1016/j.watres.2012.12.029
  • 10. Deng Y., Englehardt J.D. 2007. Electrochemical oxidation for landfill leachate treatment. Waste Manag., 27, 380–388. https://doi.org/10.1016/j.wasman.2006.02.004
  • 11. Dia O., Drogui P., Buelna G., Dubé R., Ihsen B.S. 2017. Electrocoagulation of bio-filtrated landfill leachate: Fractionation of organic matter and influence of anode materials. Chemosphere, 168, 1136–1141. https://doi.org/10.1016/j.chemosphere.2016.10.092
  • 12. Fernandes A., Pacheco M..J., Ciríaco L., Lopes A. 2015. Review on the electrochemical processes for the treatment of sanitary landfill leachates: Present and future. Appl. Catal. B Environ., 176–177, 183–200. https://doi.org/10.1016/j.apcatb.2015.03.052
  • 13. Fernandes A., Spranger P., Fonseca A.D., Pacheco, M.J., ., Ciríaco L., Lopes A. 2014. Effect of electrochemical treatments on the biodegradability of sanitary landfill leachates. Appl. Catal. B Environ., 144, 514–520. https://doi.org/10.1016/j.apcatb.2013.07.054
  • 14. Galvão N., de Souza J.B., de Sousa Vidal C.M. 2020. Landfill leachate treatment by electrocoagulation: Effects of current density and electrolysis time. J. Environ. Chem. Eng., 8, 1–8. https://doi.org/10.1016/j.jece.2020.104368
  • 15. Guo Z., Zhang Y., Jia H., Guo J., Meng X., Wang, J. 2022. Electrochemical methods for landfill leachate treatment: A review on electrocoagulation and electrooxidation. Sci. Total Environ., 806, 150529. https://doi.org/10.1016/j.scitotenv.2021.150529
  • 16. Ilhan F., Kurt U., Apaydin O., Gonullu M.T. 2008. Treatment of leachate by electrocoagulation using aluminum and iron electrodes. J. Hazard. Mater., 154, 381–389. https://doi.org/10.1016/j.jhazmat.2007.10.035
  • 17. Keyikoglu R. Karatas O. Rezania H., Kobya M., Vatanpour V., Khataee, A. 2021. A review on treatment of membrane concentrates generated from landfill leachate treatment processes. Sep. Purif. Technol., 259, 118–182. https://doi.org/10.1016/j.seppur.2020.118182
  • 18. Li X., Song J., Guo J., Wang Z., Feng Q. 2011. Landfill leachate treatment using electrocoagulation. Procedia Environ. Sci., 10, 1159–1164. https://doi.org/10.1016/j.proenv.2011.09.185
  • 19. Lin J.L., Huang C., Dempsey B., Hu J.Y. 2014 Fate of hydrolyzed Al species in humic acid coagulation. Water Res., 56, 314–324. https://doi.org/10.1016/j.watres.2014.03.004
  • 20. Lin J.L., Ika A.R. 2020. Minimization of halogenated DBP precursors by enhanced PACl coagulation: The impact of organic molecule fraction changes on DBP precursors destabilization with Alhydrates. Sci. Total Environ., 703, 134936. https://doi.org/10.1016/j.scitotenv.2019.134936
  • 21. Lin J.L., Nugrayanti M.S., Ika A.R., Karangan A. 2021. Removal of Microcystis Aeruginosa by oxidation-assisted coagulation: Effect of algogenic organic matter fraction changes on algae destabilization with Al hydrates. J. Water Process Eng., 42, 102142. https://doi.org/10.1016/J.JWPE.2021.102142
  • 22. Liu H., Zhao X., Qu J. 2010. Electrocoagulation in water treatment. In: Comninellis C, Chen G (eds) Electrochemistry for the Environment. Springer, New York, NY, pp 245–262
  • 23. Lu X., Chen Z.,Yang X. 1999. Spectroscopic study of aluminium speciation in removing humic substances by Al coagulation. Water Res., 33, 3271–3280. https://doi.org/10.1016/S0043-1354(99)00047-0.
  • 24. Murphy A.P. 1991. Chemical removal of nitrate from water. Nature, 350, 223–225. https://doi.org/10.1038/350223a0.
  • 25. Nanayakkara N., Koralage A., Meegoda C., Kariyawasam S. 2018, Removing nitrogenous compounds from landfill leachate using electrochemical techniques. Environ. Eng. Res., 24, 339–346. https://doi.org/10.4491/eer.2018.112.
  • 26. Palacios R.J.S., Kim D.G., Ko S.O. 2016. Humic acid removal by electrocoagulation: characterization of aluminum species and humic acid. Desalin. Water Treat., 57, 10969–10979. https://doi.org/10.1080/19443994.2015.1043587.
  • 27. Pirsaheb M., Azizi E., Almasi A., Soltanian T., Khosravi M., Ghayebzadeh M., Sharafi K. 2016. Evaluating the efficiency of electrochemical process in removing COD and NH4-N from landfill leachate. Desalin. Water Treat., 57, 6644–6651. https://doi.org/10.1080/19443994.2015.1012560.
  • 28. Ricordel C., Djelal H. 2014. Treatment of landfill leachate with high proportion of refractory materials by electrocoagulation: System performances and sludge settling characteristics. J. Environ. Chem. Eng., 2, 1551–1557. https://doi.org/10.1016/j.jece.2014.06.014.
  • 29. Särkkä H., Vepsäläinen M., Sillanpää M. 2015. Natural organic matter (NOM) removal by electrochemical methods - A review. J. Electroanal. Chem., 755, 100–108. https://doi.org/10.1016/j.jelechem.2015.07.029.
  • 30. Vepsäläinen M., Pulliainen M., Sillanpää M. 2012. Effect of electrochemical cell structure on natural organic matter (NOM) removal from surface water through electrocoagulation (EC). Sep. Purif. Technol., 99, 20–27. https://doi.org/10.1016/j.seppur.2012.08.011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab507156-ce9d-48df-8480-fa836f6a5b3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.