Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the effectiveness of the electrocoagulation (EC) process was evaluated based on the reduction of organic and nitrogenous contaminants in landfill leachate. A three-compartment electrochemical reactor as pre-treatment of stabilized landfill leachate was carried out ahead of biological treatment. The removal efficiencies of COD, BOD, ammonia, and nitrate were analyzed at pH 4, 6, and 8 with the current densities of 20.83 and 29.17 mA•cm–2. At pH 4, the highest removal of COD and NH4+ was obtained, i.e., in the range of 72–81% and 43–59%, respectively. The ratio of BOD5/COD was increased after EC, from initially 0.11 to 0.32 at pH 4. In addition, EC effectively removed humic substances in the leachate by targeting a large amount of high molecular weight humic substances, with around 103 kDa. However, the higher removal efficiency observed at higher current density leads to higher specific energy consumption. At a current density of 29.17 mA•cm–2, the specific energy consumption obtained in EC was around 10–17 Wh•g–1 COD and 99–148 Wh•g–1 NH4+. This could be decreased up to 50% at an applied current density of 20.83 mA•cm–2 with slightly lower efficiencies.
Czasopismo
Rocznik
Tom
Strony
235--245
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
- Research Centre for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
autor
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
- Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C
autor
- Research Centre for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
autor
- Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C
- Center for Environmental Risk Management, College of Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C.
autor
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
- Research Centre for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
Bibliografia
- 1. Amarine M., Lekhlif B., Sinan M., El Rharras A., Echaabi J. 2020. Treatment of nitrate-rich groundwater using electrocoagulation with aluminum anodes. Groundw. Sustain. Dev., 11, 100371. https://doi.org/10.1016/j.gsd.2020.100371
- 2. American Public Health Association. 2005. Standard Methods for The Examination of Water and Wastewater, 21st edn. American Public Health Association, American Water Works Associations, Water Environment Federation, Washington D.C., USA
- 3. Apaydin Ö., Özkan E. 2020. Landfill leachate treatment with electrocoagulation: Optimization by using Taguchi method. Desalin. Water Treat., 173, 65–76. https://doi.org/10.5004/dwt.2020.24719
- 4. Bagastyo A.Y., Ayu A.P. Barakwan R.A., Trihadiningrum Y. 2020. Recovery of alum sludge by using membrane-based electrochemical process. J. Ecol. Eng., 21(6), 237–247. https://doi.org/10.12911/22998993/124076
- 5. Bagastyo A.Y., Sari P.P.I., Direstiyani L.C. 2021. Effect of chloride ions on the simultaneous electrodialysis and electrochemical oxidation of mature landfill leachate. Environ. Sci. Pollut. Res., 28, 63646–63660. https://doi.org/10.1007/s11356-020-11519-z
- 6. Bakry S.A., Matta M.E., Zaher K. 2018. Electrocoagulation process performance in removal of TOC, TDS, and turbidity from surface water. Desalin. Water Treat., 129,127–138. https://doi.org/10.5004/dwt.2018.23070
- 7. Bouhezila F., Hariti M., Lounici H., Mameri N. 2011. Treatment of the OUED SMAR town landfill leachate by an electrochemical reactor. Desalination, 280, 347–353. https://doi.org/10.1016/j.desal.2011.07.032
- 8. Cañizares P., Martínez F., Lobato J., Rodrigo M.A. 2006. Electrochemically assisted coagulation of wastes polluted with eriochrome black T. Ind. Eng. Chem. Res., 45, 3474–3480. https://doi.org/10.1021/ie051432r
- 9. Cotillas S., Llanos J., Cañizares P., Mateo S., Rodrigo M.A. 2013. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation. Water Res., 47, 1741–1750. https://doi.org/10.1016/j.watres.2012.12.029
- 10. Deng Y., Englehardt J.D. 2007. Electrochemical oxidation for landfill leachate treatment. Waste Manag., 27, 380–388. https://doi.org/10.1016/j.wasman.2006.02.004
- 11. Dia O., Drogui P., Buelna G., Dubé R., Ihsen B.S. 2017. Electrocoagulation of bio-filtrated landfill leachate: Fractionation of organic matter and influence of anode materials. Chemosphere, 168, 1136–1141. https://doi.org/10.1016/j.chemosphere.2016.10.092
- 12. Fernandes A., Pacheco M..J., Ciríaco L., Lopes A. 2015. Review on the electrochemical processes for the treatment of sanitary landfill leachates: Present and future. Appl. Catal. B Environ., 176–177, 183–200. https://doi.org/10.1016/j.apcatb.2015.03.052
- 13. Fernandes A., Spranger P., Fonseca A.D., Pacheco, M.J., ., Ciríaco L., Lopes A. 2014. Effect of electrochemical treatments on the biodegradability of sanitary landfill leachates. Appl. Catal. B Environ., 144, 514–520. https://doi.org/10.1016/j.apcatb.2013.07.054
- 14. Galvão N., de Souza J.B., de Sousa Vidal C.M. 2020. Landfill leachate treatment by electrocoagulation: Effects of current density and electrolysis time. J. Environ. Chem. Eng., 8, 1–8. https://doi.org/10.1016/j.jece.2020.104368
- 15. Guo Z., Zhang Y., Jia H., Guo J., Meng X., Wang, J. 2022. Electrochemical methods for landfill leachate treatment: A review on electrocoagulation and electrooxidation. Sci. Total Environ., 806, 150529. https://doi.org/10.1016/j.scitotenv.2021.150529
- 16. Ilhan F., Kurt U., Apaydin O., Gonullu M.T. 2008. Treatment of leachate by electrocoagulation using aluminum and iron electrodes. J. Hazard. Mater., 154, 381–389. https://doi.org/10.1016/j.jhazmat.2007.10.035
- 17. Keyikoglu R. Karatas O. Rezania H., Kobya M., Vatanpour V., Khataee, A. 2021. A review on treatment of membrane concentrates generated from landfill leachate treatment processes. Sep. Purif. Technol., 259, 118–182. https://doi.org/10.1016/j.seppur.2020.118182
- 18. Li X., Song J., Guo J., Wang Z., Feng Q. 2011. Landfill leachate treatment using electrocoagulation. Procedia Environ. Sci., 10, 1159–1164. https://doi.org/10.1016/j.proenv.2011.09.185
- 19. Lin J.L., Huang C., Dempsey B., Hu J.Y. 2014 Fate of hydrolyzed Al species in humic acid coagulation. Water Res., 56, 314–324. https://doi.org/10.1016/j.watres.2014.03.004
- 20. Lin J.L., Ika A.R. 2020. Minimization of halogenated DBP precursors by enhanced PACl coagulation: The impact of organic molecule fraction changes on DBP precursors destabilization with Alhydrates. Sci. Total Environ., 703, 134936. https://doi.org/10.1016/j.scitotenv.2019.134936
- 21. Lin J.L., Nugrayanti M.S., Ika A.R., Karangan A. 2021. Removal of Microcystis Aeruginosa by oxidation-assisted coagulation: Effect of algogenic organic matter fraction changes on algae destabilization with Al hydrates. J. Water Process Eng., 42, 102142. https://doi.org/10.1016/J.JWPE.2021.102142
- 22. Liu H., Zhao X., Qu J. 2010. Electrocoagulation in water treatment. In: Comninellis C, Chen G (eds) Electrochemistry for the Environment. Springer, New York, NY, pp 245–262
- 23. Lu X., Chen Z.,Yang X. 1999. Spectroscopic study of aluminium speciation in removing humic substances by Al coagulation. Water Res., 33, 3271–3280. https://doi.org/10.1016/S0043-1354(99)00047-0.
- 24. Murphy A.P. 1991. Chemical removal of nitrate from water. Nature, 350, 223–225. https://doi.org/10.1038/350223a0.
- 25. Nanayakkara N., Koralage A., Meegoda C., Kariyawasam S. 2018, Removing nitrogenous compounds from landfill leachate using electrochemical techniques. Environ. Eng. Res., 24, 339–346. https://doi.org/10.4491/eer.2018.112.
- 26. Palacios R.J.S., Kim D.G., Ko S.O. 2016. Humic acid removal by electrocoagulation: characterization of aluminum species and humic acid. Desalin. Water Treat., 57, 10969–10979. https://doi.org/10.1080/19443994.2015.1043587.
- 27. Pirsaheb M., Azizi E., Almasi A., Soltanian T., Khosravi M., Ghayebzadeh M., Sharafi K. 2016. Evaluating the efficiency of electrochemical process in removing COD and NH4-N from landfill leachate. Desalin. Water Treat., 57, 6644–6651. https://doi.org/10.1080/19443994.2015.1012560.
- 28. Ricordel C., Djelal H. 2014. Treatment of landfill leachate with high proportion of refractory materials by electrocoagulation: System performances and sludge settling characteristics. J. Environ. Chem. Eng., 2, 1551–1557. https://doi.org/10.1016/j.jece.2014.06.014.
- 29. Särkkä H., Vepsäläinen M., Sillanpää M. 2015. Natural organic matter (NOM) removal by electrochemical methods - A review. J. Electroanal. Chem., 755, 100–108. https://doi.org/10.1016/j.jelechem.2015.07.029.
- 30. Vepsäläinen M., Pulliainen M., Sillanpää M. 2012. Effect of electrochemical cell structure on natural organic matter (NOM) removal from surface water through electrocoagulation (EC). Sep. Purif. Technol., 99, 20–27. https://doi.org/10.1016/j.seppur.2012.08.011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab507156-ce9d-48df-8480-fa836f6a5b3f