PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A comparative study of empirical, statistical, and soft computing methods coupled with feature ranking for the prediction of water saturation in a heterogeneous oil reservoir

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present research applies six empirical, three statistical, and two soft computing methods to predict water saturation of an oil reservoir. The employed empirical models are ‘Archie (Trans AIME 146(1):54–62, 1942),’ ‘DeWitte (Oil Gas J 49(16):120–134, 1950),’ ‘Poupon et al. (J Petrol Technol 6(6):27–34, 1954),’ ‘Simandoux (Revue deI’Institut Francais du.Petrol, 1963),’ ‘Poupon and Leveaux (1971),’ and ‘Schlumberger (Log interpretation principles/applications, p. 235, 7th printing. Houston, 1998)’; statistical methods are ‘multiple variable regression,’ ‘fine tree, medium tree, coarse tree-based regression tree,’ and ‘bagged tree, boosted tree-based tree ensembles’; and soft computing techniques are ‘support vector machine (SVM)’ and ‘Levenberg–Marquardt (LM), Bayesian regularization (BR), and scaled conjugate gradient (SCG)- based artificial neural network (ANN).’ In addition, log variables are ranked based on their significance in water saturation modeling. To achieve the goals, 521 data points are selected from three wells. Each data point has laboratory-derived core water saturation information and six well log features, such as gamma ray (GR), bulk density (RHOB), sonic travel time (DT), true resistivity (LLD), neutron porosity (φN), and Depth. Statistical indexes, namely regression coefficient, mean squared error, root mean squared error, average absolute percentage error, minimum absolute error percentage, and maximum absolute error percentage, are used to compare the prediction efficiency of study methods. Results show that the empirical models provide exceedingly poor prediction efficiency. Within the study models, fine tree, medium tree-based regression tree; bagged tree, boosted tree-based tree ensembles; fine Gaussian SVM; ANN with LM; and ANN with BR are very efficient predictive strategies. The log ranking reveals that GR and DT are the most important, whereas RHOB and φN are the least vital predictor variables in water saturation prediction.
Czasopismo
Rocznik
Strony
1697--1715
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
  • Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh
  • Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh
  • Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh
  • Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh
Bibliografia
  • 1. Abdideh M, Bargahi D (2012) Designing a 3D model for prediction the top of formation in oil fields using geostatistical methods. Geocarto Int 27(7):569–579
  • 2. Aïfa T, Baouche R, Baddari K (2014) Neuro-fuzzy system to predict permeability and porosity from well log data: a case study of Hassi R’Mel gas field, Algeria. J Petrol Sci Eng 123:217–229
  • 3. Al-anazi AF, Gates ID, Azaiez J (2009) Innovative data-driven permeability prediction in a heterogeneous reservoir. Paper read at EUROPEC/EAGE conference and exhibition
  • 4. Al-Anazi A, Gates I (2010) Support vector regression for porosity prediction in a heterogeneous reservoir: a comparative study. Comput Geosci 36(12):1494–1503
  • 5. Aminian K, Ameri S, Oyerokun A, Thomas B (2003) Prediction of flow units and permeability using artificial neural networks. SPE-83586-MS. Society of Petroleum Engineers
  • 6. Amiri M, Ghiasi-Freez J, Golkar B, Hatampour A (2015) Improving water saturation estimation in a tight shaly sandstone reservoir using artificial neural network optimized by imperialist competitive algorithm–a case study. J Petrol Sci Eng 127:347–358
  • 7. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(1):54–62
  • 8. Azeem T, Chun WY, MonaLisa KP, Qing LX, Ehsan MI, Munawar MJ, Wei X (2017) An integrated petrophysical and rock physics analysis to improve reservoir characterization of Cretaceous sand intervals in Middle Indus Basin, Pakistan. J Geophys Eng 14(2):212–225
  • 9. Bain LJ (2012) Applied regression analysis. Technometrics 9(1):182–183
  • 10. Balaji SA, Baskaran K (2013) Design and development of artificial neural networking (ANN) system using sigmoid activation function to predict annual rice production in Tamilnadu. Int J Comput Sci Eng Inf Technol 3:13–31
  • 11. Balan B, Mohaghegh S, Ameri S (1995) State-of-the-art in permeability determination from well log data: Part 1—a comparative study, model development. SPE-30978-MS. Society of Petroleum Engineers (1995)
  • 12. Bangal CB (2009) Automatic generation control of interconnected power systems using artificial neural network techniques. Ph.D. thesis, Bharath University, Chennai
  • 13. Bassiouni Z (1994) Theory, measurement, and interpretation of well logs. In: Henry L (eds) Doherty Memorial Fund of AIME. Society of Petroleum Engineers, Texas
  • 14. Baziar S, Tadayoni M, Nabi-Bidhendi M, Khalili M (2014) Prediction of permeability in a tight gas reservoir by using three soft computing approaches: a comparative study. J Nat Gas Sci Eng 21:718–724
  • 15. Baziar S, Shahripour HB, Tadayoni M, Nabi-Bidhendi M (2018) Prediction of water saturation in a tight gas sandstone reservoir by using four intelligent methods: a comparative study. Neural Comput Appl 30(4):1171–1185
  • 16. Bermejo JF, Fernandez JF, Polo FO, Marquez AC (2019) A review of the use of artificial neural network models for energy and reliability prediction. A study of the solar PV, hydraulic and wind energy sources. Appl Sci 9(9):1844
  • 17. Close D, Caycedo F (2011) Integrated geophysics and geomodelling workflows for reservoir characterization: a case study of waterflood optimization. SEG Technical Program Expanded Abstracts 1840–1844
  • 18. Cortes C, Vapnik V, Fuller R (1995) Support-vector networks. Mach Learn 20:273–297
  • 19. DeWitte L (1950) Relations between resistivities and fluid contents of porous rocks. Oil Gas J 49(16):120–134
  • 20. Drucker H, Cortes C (1995) Boosting decision trees. Presented at the advances in neural information processing systems 8 conference, pp 27–30 November, NIPS, Denver, CO, USA
  • 21. Du X, Lu Z, Li D, Xu Y, Li P, Lu D (2019) A novel analytical well test model for fractured Vuggy carbonate reservoirs considering the coupling between oil flow and wave propagation. J Petrol Sci Eng 173:447–461
  • 22. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77(4):802–813
  • 23. Glover P (2014) The effect of clay on porosity and resistivity logs. In: Petrophysics M.Sc. Course Notes Chapter 20. Leeds University, Yorkshire, United Kingdom
  • 24. Hakiki F, Shidqi M (2018) Revisiting fracture gradient: comments on “a new approaching method to estimate fracture gradient by correcting Matthew-Kelly and Eaton’s stress ratio.” Petroleum 4(1):1–6
  • 25. Han S, Zhang J, Yang C, Bai S, Huang L, Dang W, Wang C (2016) Well log evaluation of shale gas reservoirs and preservation conditions of Lower Cambrian shale succession in Cengong Block of southeast Sichuan basin, south China. J Nat Gas Sci Eng 33:337–346
  • 26. Helle HB, Bhatt A, Ursin B (2001) Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study. Geophys Prospect 49:43–444
  • 27. Ismail A, Yasin Q, Du Q, Bhatti AA (2017) A comparative study of empirical, statistical and virtual analysis for the estimation of pore network permeability. J Nat Gas Sci Eng 45:825–839
  • 28. Jafarzadeh N, Kadkhodaie A, Ahmad BJ, Kadkhodaie R, Karimi M (2019) Identification of electrical and petrophysical rock types based on core and well logs: utilizing the results to delineate prolific zones in deep water sandy packages from the Shah Deniz gas field in the south Caspian Sea basin. J Nat Gas Sci Eng 69
  • 29. James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning with applications in R. Springer Texts in Statistics 103
  • 30. Jian FX, Larue DK, Castellini A, Toldi J (2002) Reservoir modeling methods and characterization parameters for a shoreface reservoir: What is important for fluid flow performance? SPE-77428-MS. Society of Petroleum Engineers
  • 31. Jorjani E, Chelgani SC, Mesroghli S (2008) Application of artificial neural networks to predict chemical desulfurization of Tabas coal. Fuel 87(12):2727–2734
  • 32. Kamali MR, Omidvar A, Kazemzadeh E (2013) 3D geostatistical modeling and uncertainty analysis in a carbonate reservoir, SW Iran. J Geol Res
  • 33. Karacan CÖ (2020) A fuzzy logic approach for estimating recovery factors of miscible CO2-EOR projects in the United States. J Petrol Sci Eng 184
  • 34. Khishvand M, Khamehchi E (2012) Nonlinear risk optimization approach to gas lift allocation optimization. Ind Eng Chem Res 51(6):2637–2643
  • 35. Kleynhans T, Montanaro M, Gerace A, Kanan C (2017) Predicting top-of-atmosphere thermal radiance using MERRA-2 atmospheric data with deep learning. Remote Sens 9(11):1133
  • 36. Li K, Horne RN (2001) Characterization of spontaneous water imbibition into gas-saturated rocks. SPE J 6(04):375–384
  • 37. Liu H, Lei X, Mao C, Li S (2014) Improving reservoir thickness prediction using seismic attributes and attributes fusion. Acta Geophys 62:544–563
  • 38. Lucia FJ (2007) Carbonate reservoir characterization: an integrated approach. Springer
  • 39. Malureanu I, Boaca T, Neagu DD (2016) New relations of water saturation’s calculus from well logs. Acta Geophys 64:1542–1562
  • 40. Mehana M, El-Monier I (2016) Shale characteristics impact on nuclear magnetic resonance. Petroleum 2(2):138–147
  • 41. Miah MI, Ahmed S, Zendehboudi S (2020) Connectionist and mutual information tools to determine water saturation and rank input log variables. J Petrol Sci Eng 190
  • 42. Miah MI, Ahmed S, Zendehboudi S (2020) Log data-driven model and feature ranking for water saturation prediction using machine learning approach. J Petrol Sci Eng 194:107291
  • 43. Moradi S, Moeini M, Al-Askari MGK, Mahvelati EH (2016) Determination of shale volume and distribution patterns and effective porosity from well log data based on cross-plot approach for a shaly carbonate gas reservoir. World multidisciplinary earth sciences symposium, IOP Conference Series, Earth Environ. Sci., vol 44, no 4
  • 44. Poupon A, Leveaux J (1971) Evaluation of water saturation in shaly formations. The SPWLA 12th annual logging symposium, Dallas, Texas
  • 45. Poupon A, Loy ME, Tixier MP (1954) A Contribution to electrical log interpretation in shaly sands. J Petrol Technol 6(6):27–34
  • 46. Poupon A, Strecker L, Gartner L (1967) Introduction to a review of log interpretation methods used in the Niger delta. The SPWLA 8th annual logging symposium. Denver, Colorado
  • 47. Puskarczyk E, Jarzyna JA, Wawrzyniak-Guz K, Krakowska PI, Zych M (2019) Improved recognition of rock formation on the basis of well logging and laboratory experiments results using factor analysis. Acta Geophys 67:1809–1822
  • 48. Qin J, Cheng S, He Y, Wang Y, Feng D, Qin G, Yu H (2018) A novel well-testing model to analyze production distribution of multi-stage fractured horizontal well. J Nat Gas Sci Eng 59:237–249
  • 49. Schlumberger (1998) Log interpretation principles/applications, p. 235, 7th printing. Houston
  • 50. Shedid SA, Saad MA (2017) Comparison and sensitivity analysis of water saturation models in shaly sandstone reservoirs using well logging data. J Petrol Sci Eng 156:536–545
  • 51. Si W, Di B, Wei J, Li Q (2016) Experimental study of water saturation effect on acoustic velocity of sandstones. J Nat Gas Sci Eng 33:37–43
  • 52. Simandoux P (1963) Mesuresd ielectriques en milieu poreux, application a mesure des saturations en eau, Etude du Comportment des massifs Argileux. Supplementary Issue. Revue deI’Institut Francais du. Petrol
  • 53. Stadtműller M (2019) Well logging interpretation methodology for carbonate formation fracture system properties determination. Acta Geophys 67:1933–1943
  • 54. Taheri R, Kabuli M, Vryzas Z (2020) Fracturing and permeability enhancement with laser technology employing fuzzy logic. J Petrol Sci Eng 188
  • 55. Wang X, Hou J, Liu Y, Ji L, Sun J (2017) Studying reservoir heterogeneity by analytic hierarchy process and fuzzy logic, case study of Es1x formation of the Wang guan tun oilfield, China. J Petrol Sci Eng 156:858–867
  • 56. Wang P, Peng S, He T (2018) A novel approach to total organic carbon content prediction in shale gas reservoirs with well logs data, Tonghua Basin, China. J Nat Sci Eng 55:1–15
  • 57. Wood DA (2020) Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data. J Petrol Sci Eng 184
  • 58. Yang S (2017) Fundamentals of petrophysics. Springer, Berlin Heidelberg
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab4d61c1-3782-4d0c-81e4-88e5e87d5328
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.