PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bearing capacity of eccentrically loaded strip footing on spatially variable cohesive soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study considers the bearing capacity of eccentrically loaded strip footing on spatially variable, purely cohesive soil. The problem is solved using the random finite element method. The anisotropic random field of cohesion is generated using the Fourier series method, and individual problems within performed Monte Carlo simulations (MCSs) are solved using the Abaqus finite element code. The analysis includes eight different variants of the fluctuation scales and six values of load eccentricity. For each of these 48 cases, 1000 MCSs are performed and the probabilistic characteristics of the obtained values are calculated. The results of the analysis indicate that the mean value of the bearing capacity decreases linearly with eccentricity, which is consistent with Meyerhof's theory. However, the decrease in standard deviation and increase in the coefficient of variation of the bearing capacity observed are non-linear, which is particularly evident for small eccentricities. For one chosen variant of fluctuation scales, a reliability analysis investigating the influence of eccentricity on reliability index is performed. The results of the analysis conducted show that the value of the reliability index can be significantly influenced even by small eccentricities. This indicates the need to consider at least random eccentricities in future studies regarding probabilistic modelling of foundation bearing capacity.
Wydawca
Rocznik
Strony
425--437
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Institute of Fundamental Technological Research Polish Academy of Sciences
autor
  • Wroclaw University of Science and Technology, Faculty of Civil Engineering
Bibliografia
  • [1] Ali, A., Lyamin, A. V., Huang, J., Sloan, S. W., & Cassidy, M. J. (2016). Effect of spatial correlation length on the bearing capacity of an eccentrically loaded strip footing. In 6th Asian-Pacific Symposium on Structural Reliability and its Applications-APSSRA 2016 (pp. 312–317). Tongji University.
  • [2] Bagińska, I., Kawa, M., & Janecki, W. (2018). Estimation of spatial variability properties of mine waste dump using CPTu results–case study. In Cone Penetration Testing 2018 (pp. 109–115). CRC Press.
  • [3] Cami, B., Javankhoshdel, S., Phoon, K. K., & Ching, J. (2020). Scale of fluctuation for spatially varying soils: estimation methods and values. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6(4), 03120002.
  • [4] Ching, J., Wu, T. J., Stuedlein, A. W., & Bong, T. (2018). Estimating horizontal scale of fluctuation with limited CPT soundings. Geoscience Frontiers, 9(6), 1597–1608.
  • [5] Chwała, M. (2020a). Soil sounding location optimisation for spatially variable soil. Géotechnique Letters, 10(3), 409–418.
  • [6] Chwała, M. (2020). On determining the undrained bearing capacity coefficients of variation for foundations embedded on spatially variable soil. Studia Geotechnica et Mechanica, 42(2).
  • [7] Chwała, M., & Kawa, M. (2021). Random failure mechanism method for working platform bearing capacity assessment with a linear trend in undrained shear strength. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2021.06.004
  • [8] Doob, J. L. (1953). Stochastic processes (Vol. 10). Wiley: New York.
  • [9] EN 1990 (2002). Eurocode - Basis of structural design. European Committee for Standardization; 2002
  • [10] Fenton, G. A., & Griffiths, D. V. (2003). Bearing-capacity prediction of spatially random c ϕ soils. Canadian geotechnical journal, 40(1), 54–65.
  • [11] Fenton, G. A., Griffiths, D. V., & Williams, M. B. (2005). Reliability of traditional retaining wall design. Geotechnique, 55(1), 55–62.
  • [12] Griffiths, D. V., & Fenton, G. A. (2001). Bearing capacity of spatially random soil: the undrained clay Prandtl problem revisited. Geotechnique, 51(4), 351–359.
  • [13] Griffiths, D. V., & Fenton, G. A. (2004). Probabilistic slope stability analysis by finite elements. Journal of geotechnical and geoenvironmental engineering, 130(5), 507–518.
  • [14] Huang, L., Cheng, Y. M., Leung, Y. F., & Li, L. (2019). Influence of rotated anisotropy on slope reliability evaluation using conditional random field. Computers and Geotechnics, 115, 103133.
  • [15] ISO 2394: 2015 (2015) General principles on reliability for structures; International Standard Organization.
  • [16] Itasca. 2011. FLAC (Fast Largrangian Analysis of Continua) User's Manuals. Minneapolis: Itasca Consulting Group, Inc
  • [17] Jha, S. K., & Ching, J. (2013a). Simplified reliability method for spatially variable undrained engineered slopes. Soils and Foundations, 53(5), 708–719.
  • [18] Jha, S. K., & Ching, J. (2013b). Simulating spatial averages of stationary random field using the fourier series method. Journal of Engineering Mechanics, 139(5), 594–605.
  • [19] Kawa, M., Bagińska, I., & Wyjadłowski, M. (2019). Reliability analysis of sheet pile wall in spatially variable soil including CPTu test results. Archives of Civil and Mechanical Engineering, 19(2), 598–613.
  • [20] Kawa, M., & Puła, W. (2020). 3D bearing capacity probabilistic analyses of footings on spatially variable c–ϕ soil. Acta Geotechnica, 15(6), 1453–1466.
  • [21] Kawa, M., Puła, W., & Truty, A. (2021). Probabilistic analysis of the diaphragm wall using the hardening soil-small (HSs) model. Engineering Structures, 232, 111869.
  • [22] Li, Y., Fenton, G. A., Hicks, M. A., & Xu, N. (2021). Probabilistic Bearing Capacity Prediction of Square Footings on 3D Spatially Varying Cohesive Soils. Journal of Geotechnical and Geoenvironmental Engineering, 147(6), 04021035.
  • [23] Lloret-Cabot, M. F. G. A., Fenton, G. A., & Hicks, M. A. (2014). On the estimation of scale of fluctuation in geostatistics. Georisk: Assessment and management of risk for engineered systems and geohazards, 8(2), 129–140.
  • [24] Meyerhof, G. (1953). The bearing capacity of foundations under eccentric and inclined loads. In Proc. of the 3rd Int. Conf. on SMFE (Vol. 1, pp. 440–445).
  • [25] Phoon, K. K., & Kulhawy, F. H. (1999). Characterization of geotechnical variability. Canadian geotechnical journal, 36(4), 612–624.
  • [26] Pieczyńska-Kozłowska, J. M., Puła, W., Griffiths, D. V., & Fenton, G. A. (2015). Influence of embedment, self-weight and anisotropy on bearing capacity reliability using the random finite element method. Computers and Geotechnics, 67, 229–238.
  • [27] Pieczyńska-Kozłowska, J., Bagińska, I., & Kawa, M. (2021). The Identification of the Uncertainty in Soil Strength Parameters Based on CPTu Measurements and Random Fields. Sensors, 21(16), 5393.
  • [28] Puła, W., & Zaskórski, Ł. (2015). Estimation of the probability distribution of the random bearing capacity of cohesionless soil using the random finite element method. Structure and Infrastructure Engineering, 11(5), 707–720.
  • [29] Sert, S., Luo, Z., Xiao, J., Gong, W., & Juang, C. H. (2016). Probabilistic analysis of responses of cantilever wall-supported excavations in sands considering vertical spatial variability. Computers and Geotechnics, 75, 182–191.
  • [30] Soubra, A. H. (2009). Reliability-based analysis and design of eccentrically loaded footings. In Contemporary Topics in In Situ Testing, Analysis, and Reliability of Foundations (pp. 379–386).
  • [31] Vanmarcke, E. (2010). Random fields: analysis and synthesis. World scientific.
  • [32] Vessia, G., Cherubini, C., Pieczyńska, J., & Puła, W. (2009). Application of Random Finite Element Method to Bearing Capacity Design of Strip Footing. Journal of GeoEngineering, 4(3), 103–112.
  • [33] Wyjadłowski, M., Bagińska, I., & Reiner, J. (2018). Probabilistic assessment of pile capacity based on CPTu probing including random pile foundation depth. In MATEC Web of Conferences (Vol. 196, p. 01058). EDP Sciences.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab4c1f65-2651-45e2-b987-593b203d2dfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.