PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiple spike stall cells in low speed axial compressor rotor blade row

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inception and development of multiple stall cells of short length scales are numerically investigated in an axial compressor rotor blade row. The method of investigation is based on time accurate three-dimensional full annulus simulations. Time dependent flow structure results revealed that there are two criteria responsible for inception of a special kind of stall, introduced as spike stall in the literature. These criteria are defined as leading edge spillage and trailing edge backflow, which occur at specific mass flow rates near to stall conditions. The numerical results revealed that once the spike stall cells appear, they cover roughly two blade passages in the circumferential direction and cover about 25% of the blade height. By further revolution of the blade row, the number of cells tends to increase. For the present case study, the number of stall cells increased to three after 8.5 rotor revolutions from the moment of the initial spike stall occurrence. Even at this moment, both of the above mentioned criteria for the spike stall inception have been observed within the blades passages. These events caused the inlet relative flow angle to the blade rows, and therefore the flow incidence angle and consequent blockage to the main flow, to increase. The tip leakage flow frequency spectrum has been studied through surveying instantaneous static pressure signals imposed on pressure side of the blades and also on the casing walls. These latter results showed that any further revolving of the rotor blade row, exceeding 8.5 revolutions, causes the spike stall to disturb the flow structure significantly.
Rocznik
Strony
47--57
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
autor
  • School of Mechanical Engineering, Arak University of Technology, Arak, Iran
Bibliografia
  • 1. Day I.J., 1993, Stall inception in axial flow compressors, ASME Journal of Turbomachinery, 115, 1-9 2. Deppe A., Saathoff H., Stark U., 2008, Discussion: Criteria for spike initiated rotating stall, (Vo H.D., Tan C.S., Greitzer E.M., ASME Journal of Turbomachinery, 130, 011023)
  • 3. Furukawa M., Inoue M., Saiki K., Yamada K., 1999, The role of tip leakage vortex breakdown in compressor rotor aerodynamics, ASME Journal of Turbomachinery, 121, 469-480
  • 4. Furukawa M., Saiki K., Yamada K., Inoue M., 2000, Unsteady flow behavior due to breakdown of tip leakage vortex in an axial compressor rotor at near-stall condition, ASME Paper No. 2000-GT-666
  • 5. Garnier V.H., Epstein A.H., Greitzer E.M., 1991, Rotating waves as a stall inception indication in axial compressors, ASME Journal of Turbomachinery, 113, 290-301
  • 6. Hah C., Bergner J., Schiffer H., 2006, Short length-scale rotating stall inception in a transonic axial compressorcriteria and mechanisms, ASME Paper No. GT2006-90045
  • 7. Hah C., Rabe D.C., Wadia A.R., 2004, Role of tip-leakage vortices and passage shock in stall inception in a swept transonic compressor rotor, ASME Paper No. GT2004-53867
  • 8. Hoying D.A., Tan C.S., Vo H.D., 1999, Role of blade passage flow structures in axial compressor rotating stall inception, ASME Journal of Turbomachinery, 121, 735-742
  • 9. Inoue M., Kuroumaru M., Fukuhara M., 1986, Behavior of tip leakage flow behind an axial compressor rotor, ASME of Engineering for Gas Turbine and Power, 108, 7-14
  • 10. Mailach R., Lehmann I., Vogeler K., 2001, Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex, ASME Journal of Turbomachinery, 123, 453-463
  • 11. Marz J., Hah C., Neise W., 2001, An experimental and numerical investigation into the mechanisms of rotating instability, ASME Paper No. GT-0536
  • 12. Moore F.K., Greitzer E.M.A., 1986, Theory of post-stall transients in axial compression systems, Part I –Development of equations. Part II – Applications, Journal of Engineering for Gas Turbines and Power, 108, 231-239
  • 13. Spakovszky Z., 2001, Application of Axial and Radial Compressor Dynamic System Modeling, PhD Thesis, Massachusetts Institute of Technology, U.S.A.
  • 14. Spakovszky Z.S., Weigl H.J., Paduano J.D., Van Schalkwyk C.M., Suder K.L., Bright M.M., 1999, Rotating stall control in a high-speed stage with inlet distortion, part i: radial distortion, ASME Journal of Turbomachinery, 121, 510-516
  • 15. Tryfonidids M., Etchevers O., Paduano J., Epstein A., Hendricks G.J., 1995, Prestall behavior of several high-speed compressors, Journal of of Turbomachinery, 117, 62-80
  • 16. Vo H.D., Tan C.H., Greitzer E.M., 2008, Criteria for spike initiated rotating stall, ASME Journal of Turbomachinery, 130, 011023
  • 17. Zhang H., Deng X., Chen J., et al., 2005, Unsteady tip clearance flow in an isolated axial compressor rotor, Journal of Thermal Science, 114, 211-219
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab4b9d94-6214-4fa3-b712-2be771818aaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.