PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation on different behavior and mechanism of Ca(II) and Fe(III) adsorption on spodumene surface

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Behavior and mechanism of Ca2+ and Fe3+ adsorption on spodumene surface were investigated by micro flotation tests, zeta potential measurements, and density functional theory (DFT) calculation methods. The micro flotation tests showed that Ca2+ and Fe3+ activated the flotation of spodumene remarkably. However, the effect of Fe3+ was more significant than that of Ca2+. Additionally, Fe3+ significantly changed the zeta potential of spodumene while Ca2+ showed a little change. Meanwhile, the calculated adsorption energy of Fe3+ on spodumene surface was much greater than that of Ca2+ indicating that Fe3+ is more apt to be adsorbed on spodumene surface than Ca2+. The value of bond population in Ca-O illustrated that the bond of Ca-O consists of partial covalent proportion and some ionic component. On the contrary, the bond of Fe-O showed a relatively strong covalent property. The partial density of states (PDOS) of free Ca/Fe and the reacted O atom on spodumene (110) surface before and after the adsorption showed that Fe 3d orbital and O 2p orbital formed hybridization. The density of states (DOS) near the Fermi level of spodumene surface after adsorption with Fe3+ was much stronger than that with Ca2+.
Rocznik
Strony
535--550
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
Bibliografia
  • 1. BLOSS F.D., 1971, Crystallography and Crystal Chemistry, Holt, Rinehart and Winston, New York.
  • 2. BRAGG L., CLARINGBULL G.F., 1965, Crystal Structures of Minerals, G. Bell and Sons, London.
  • 3. BURNS L., NELSON P.A., 1978, Advanced batteries for vehicle propulsion, Technical Paper Series, vol. 780458, Society of Automative Engineers, Warrendale.
  • 4. COOPER J.F., BORG I.Y., O’CONNEL, L.G., BEHRIN E., RUBIN B., WIESNER H.J., 1976, Lithium requirements for electric vehicles using lithium–water–air batteries. In: Vine, J.D. (Eds.), Lithium Resources and Requirements by the Year 2000, Geological Survey Professional Paper, vol. 1005, U.S. Government Printing Office, Washington, 9-12.
  • 5. FUERSTENAU D W, PRADIP, 2005, Zeta potentials in the flotation of oxide and silicate minerals, Advances in Colloid and Interface Science, 114–115, 9-26.
  • 6. JOAN R., CLARK, ET AL., 1969, Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements, Mineral. Soc. Amer. Spec. Pap., 2, 31-50.
  • 7. KAZUME N., MASAHITO Y., MASAYUKI H., Energetics of Mg and B adsorption on polar zinc oxide surfaces from first principles, Phys. Rev. B, 2008, 77, 35330-35336.
  • 8. KRAUSE J. T., 1968, Internal Friction of Twinned Spodumene, J. Appl. Phys., 39, 44-72.
  • 9. KWANG SOON MOON, DOUGLAS W. FUERSTENAU, 2003, Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3]2) from other aluminosilicates, Int. J. Miner. Process., 72, 11-24.
  • 10. LANDGREBE A.A., NELSON P.A., 1976, Battery research sponsored by the U.S. energy research and development administration, In: Vine, J.D. (Eds.), Lithium Resources and Requirements by the Year 2000, Geological Survey Professional Paper, vol. 1005, U.S. Government Printing Office, Washington, 2-5.
  • 11. MONKHORST H.J., PACK J.D., 1976, Special points for Brillouin-zone integrations, Physical Review B, 13, 5188-5192.
  • 12. NICHOLSON P., 1978, Past and future development of the market for lithium in the world aluminum industry, The International Journal of Energy, 3, 235-413.
  • 13. PAYNE M.C., TETER M.P., ALLAN D.C., ARIAS T.A., JOANNOPOULOS J.D., 1992, Iterative minimization techniques for ab initio total energy calculation: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 64, 1045-1097.
  • 14. PENG WENSHI, LIU GAOKUI, 1982, Atlas of mineral infrared spectroscopy, Science Press, Beijing.
  • 15. PERDEW J.P., BURKE K., ERNZERHOF M., 1996, Generalized gradient approximation made simple, Physical Review Letter, 77, 3865-3868.
  • 16. PERDEW J.P., WANG Y., 1992, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B, 45, 13244-13249.
  • 17. REUTER K., SCHEFFLER M., Composition, structure, and stability of RuO2(110) as a function of oxygen pressure, Phys. Rev. B, 2001, 65, 035406-035417.
  • 18. SEGALL M D, SHAH R, PICKARD C J, PAYNE M C, 1996, Population analysis in plane wave electronic structure calculations, Molecular Physics, 89, 571-577.
  • 19. SUN CHUANYAO, YIN WANZHONG, 2001, Difference in Floatability of Spodumene and Aegirine from the Same Ore Body, Journal of China University of Mining & Technology, Vol. 30, 531-536.
  • 20. VANDERBILT D., 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B, 41, 7892-7895.
  • 21. VON OERTZEN G.U., SKINNER W.M., NESBITT H.W., PRATT A.R., BUCKLEY A.N., 2007, Cu adsorption on pyrite (100): ab initio and spectroscopic studies, Surface Science, 601, 5794-5799.
  • 22. WENDT G., 1971, Operating experiences with electrolytes containing lithium fluoride, Metallurgical Transactions, 2, 155-161.
  • 23. ZACHARIASEN W.H., 1963, The crystal structure of monoclinic metaboric acid, Acta Crystallographica, 16, 385-392.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab3e95fd-6da0-4ea8-b860-83236bf6131b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.