PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electromagnetic driven forming utilizing a metal ring for controlling shapes of sheet metals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electromagnetic forming (EMF) has unique advantages in processing metallic materials owing to the high-strain effect. However, it possesses poor shape-control ability for workpieces and is not suitable for forming materials with low conductivity. To address this, an electromagnetic-driven forming method with a metal driven ring is proposed to achieve Lorentz force transforming and shape control of the workpiece. The effectiveness of this method and ring configurations on the deformation behavior of AA1060-H24 aluminum alloy sheets, along with the forming mechanism, have been thoroughly investigated in combination with experiments and simulations. Results demonstrate that the introduction of the driven ring can adjust the Lorentz force generated on the sheet, resulting in a flat-topped profile with a uniform deformation ratio of 0.62, which increases by 100% compared to that without a driven ring. Meanwhile, it is discovered that the uniform deformed area, forming shapes, and targeted deformation areas can be controlled by regulating the ring configurations, which indicates that the proposed method possesses good adaptability and flexibility in shape control. Moreover, it has also been validated and applied in forming low-conductivity titanium sheets, which can be deformed into a flat-topped shape. This work provides an effective approach for shape control by aggregating the Lorentz force on the driven ring, which is essential for broadening the scope of EMF technology within the domain of sheet metal processing.
Rocznik
Strony
art. no. e4, 2025
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
autor
  • Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
autor
  • Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
autor
  • Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
autor
  • Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
  • Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
autor
  • Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
autor
  • Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
  • Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
autor
  • Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station, China Three Gorges University, Yichang 443002, China
Bibliografia
  • 1. Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M. Electromagnetic forming—a review. J Mater Process Technol.2011;211:787–829.
  • 2. Li H, Peng LF, Meng B, Xu ZT, Wang LL, Ngaile G, et al. Energy field assisted metal forming: current status, challenges and prospects. Int J Mach Tools Manuf. 2023;192: 104075.
  • 3. Iriondo E, Gutiérrez MA, González B, Alcaraz JL, Daehn GS. Electromagnetic impulse calibration of high strength sheet metal structures. J Mater Process Technol. 2011;211:909–15.
  • 4. Jin Y, Yu H. Enhanced formability and hardness of AA2195-T6 during electromagnetic forming. J Alloys Compd. 2022;890:161891.
  • 5. Imbert JM, Winkler SL, Worswick MJ, Oliveira DA, Golovashchenko S. The effect of tool–sheet interaction on damage evolution in electromagnetic forming of aluminum alloy sheet. J Eng Mater Technol. 2005;127:145–53.
  • 6. Dond SK, Kolge T, Choudhary H, Sharma A, Dey GK. Determination of magnetic coupling and its influence on the electromagnetic tube forming and discharge circuit parameters. J Manuf Process. 2020;54:19–27.
  • 7. Paese E, Geier M, Homrich RP, Rosa P, Rossi R. Sheet metal electromagnetic forming using a flat spiral coil: experiments, modeling, and validation. J Mater Process Technol. 2019;263:408–22.
  • 8. Li J, Qiu W, Huang L, Su H, Tao H, Li P. Gradient electromagnetic forming (GEMF): a new forming approach for variable-diameter tubes by use of sectional coil. Int J Mach Tools Manuf.2018;135:65–77.
  • 9. Noh HG, Song WJ, Kang BS, Kim J. Two-step electromagnetic forming process using spiral forming coils to deformsheet metal in a middle-block die. Int J Adv Manuf Technol.2015;76:1691–703.
  • 10. Oliveira DA, Worswick MJ, Finn M, Newman D. Electromagnetic forming of aluminum alloy sheet: free-form and cavity fill experiments and model. J Mater Process Technol. 2005;170:350–62.
  • 11. Kamal M, Daehn GS. A uniform pressure electromagnetic actuator for forming flat sheets. J Manuf Sci Eng. 2007;129:369–79.
  • 12. Wang Q, Xu J, Wang S, Zhao Y, Wang Y. Analysis, simulation and experimental study of electromagnetic forming of titanium bipolar plate with arc-shaped uniform pressure coil. Int J Mater Form. 2024;17:23.
  • 13. Ouyang S, Zhang W, Du L, Li C, Zhu X, Li X, et al. Enhancing forming accuracy in aluminum alloy variable-diameter tubes through dual-coil controllable electromagnetic forming. J Manuf Process. 2023;108:126–40.
  • 14. Zhang W, Ouyang S, Du L, Sun Y, Lai Z, Han X, et al. Electromagnetic forming with automatic feedback control of Lorentz force distribution: a new forming method and its application to high-uniformity tube deformation. J Mater Process Technol.2023;313: 117869.
  • 15. Lai Z, Cao Q, Han X, Huang Y, Deng F, Chen Q, et al. Investigation on plastic deformation behavior of sheet workpiece during radial Lorentz force augmented deep drawing process. J Mater Process Technol. 2017;245:193–206.
  • 16. Cao Q, Du L, Li Z, Lai Z, Li Z, Chen M, et al. Investigation of the Lorentz-force-driven sheet metal stamping process for cylindrical cup forming. J Mater Process Technol. 2019;271:532–41.
  • 17. Yan Z, Xiao A, Zhao P, Cui X, Sun X, Deng Z. Manufacture of complex shape parts by high-speed electromagnetic hydraulic forming method. Arch Civ Mech Eng. 2022;22:113.
  • 18. Xu J, Xie X, Wen Z, Cui J, Zhang X, Zhu D, et al. Deformation behaviour of AZ31 magnesium alloy sheet hybrid actuating with Al driver sheet and temperature in magnetic pulse forming. J Manuf Process. 2019;37:402–12.
  • 19. Qiu L, Yi N, Abu-Siada A, Tian J, Fan Y, Deng K, et al. Electromagnetic force distribution and forming performance in electromagnetic forming with discretely driven rings. IEEE Access.2020;8:16166–73.
  • 20. Liu W, Wu J, Liu J, Meng Z, Li J, Huang S. Comparison of electromagnetic-driven stamping and electromagnetic forming limit curves for AA5182-O aluminum alloy sheet. Int J Adv Manuf Technol. 2023;126:2567–77.
  • 21. Du Z, Cui X, Yang H, Xia W. Deformation and fracture behavior of 5052 aluminum alloy by electromagnetic-driven stamping. Int J Adv Manuf Technol. 2022;123:3955–68.
  • 22. Liu W, Zhang M, Li J, Wu J, Meng Z, Huang S. Formability of SS304 stainless steel foil at elevated strain-rate. J Mater Res Technol. 2023;26:7471–82.
  • 23. Seth M, Vohnout VJ, Daehn GS. Formability of steel sheet in high velocity impact. J Mater Process Technol. 2005;168:390–400.
  • 24. Jelokhani Niaraki R, Fazli A, Soltanpour M. Electromagnetically activated high-speed hydroforming process: a novel process toover come the limitations of the electromagnetic forming process. CIRP J Manuf Sci Technol. 2019;27:21–30.
  • 25. Li C, Xu X, Ouyang S, Du L, Zhang W, Zhu X, et al. Improving forming accuracy of variable-diameter tube by electromagnetic forming using segmented coil. Int J Adv Manuf Technol.2024;132:4829–40.
  • 26. Park H, Kim D, Lee J, Kim S-J, Lee Y, Moon YH. Effect of analuminum driver sheet on the electromagnetic forming of DP780 steel sheet. J Mater Process Technol. 2016;235:158–70.
  • 27. Li F, Mo J, Li J, Zhou H, Huang L. Study on the driver plate for electromagnetic forming of titanium alloy Ti-6Al-4V. Int J Adv Manuf Technol. 2013;69:127–37.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab38970e-1721-47ca-be93-933cc3c157b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.