Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy and 8th European Process Intensification Conference, 31.05–2.06.2023, Warsaw, Poland
Języki publikacji
Abstrakty
A significant challenge of modern technology is the design of high-efficiency filters that allow more effective removal of aerosol particles suspended in the air, e.g. micron and submicron oil droplets. Our previous work has proven that aerogel structure deposition on fibre surface is a promising method for post-production improvement of the oil-mist filter performance. In this work, a modification of the previously described method was proposed, consisting in carrying out the process in the flow (semi-batch) regime, i.e. the streams of reagents successively pass through the filter in a self-designed and self-made modification chamber. The effect of the reactant flow rate and the order of reactants (precursor/catalyst or catalyst/precursor solutions) on the mass of deposited aerogel, and thus – also on the filtration efficiency during the removal of oil mist droplets and the pressure drop accompanying the airflow – is presented and described. The possible routes of modification scaling-up are discussed with defined unit operations.
Rocznik
Tom
Strony
art. no. e25
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
- GVS Filter Technology, Via Roma 5040069, Zola Predosa (Bologna), Italy
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
- 1. Agranovski I.E., Braddock R.D., 1998. Filtration of liquid aerosols on wettable fibrous filters. AIChE J., 44, 2775–2783. DOI: 10.1002/aic.690441218.
- 2. Azani A., Halin D.C., Razak K.A., Abdullah M.M.A.B., Salleh M.A.A.M., Mahmed N., Ramli M.M., Azhari A.W., Chobpattana V., 2019. Recent graphene oxide/TiO2 thin film based on self-cleaning application. IOP Conf. Ser.: Mater. Sci. Eng., 572, 012079. DOI: 10.1088/1757-899X/572/1/012079.
- 3. Borzęcka N.H., Nowak B., Gac J.M., Głaz T., Bojarska M., 2020. Kinetics of MTMS-based aerogel formation by the sol-gel method-experimental results and theoretical description. J. Non-Cryst. Solids, 547, 120310. DOI: 10.1016/j.jnoncrysol.2020.120310.
- 4. Borzęcka N.H., Nowak B., Pakuła R., Przewodzki R., Gac J.M., 2023. Diffusion/reaction limited aggregation approach for microstructure evolution and condensation kinetics during synthesis of silica-based alcogels. Int. J. Mol. Sci., 24, 1999. DOI: 10.3390/ijms24031999.
- 5. Brinker C.J., Keefer K.D., Schaefer D.W., Ashley C.S., 1982. Sol-gel transition in simple silicates. J. Non-Cryst. Solids, 48, 47-64. DOI: 10.1016/0022-3093(82)90245-9.
- 6. Brown R.C., 1993. Electrically charged filter material. In: Air filtration: An integrated approach to the theory and applications of fibrous filters. Pergamon Press, New York, 121.
- 7. Charvet A., Gonthier Y., Gonze E., Bernis A., 2010. Experimental and modelled efficiencies during the filtration of a liquid aerosol with a fibrous medium. Chem. Eng. Sci., 65, 1875–1886. DOI: 10.1016/j.ces.2009.11.037.
- 8. Cheng C., Gupta M., 2018. Roll-to-roll surface modification of cellulose paper via initiated chemical vapor deposition. Ind. Eng. Chem. Res., 57, 11675-11680. DOI: 10.1021/acs.iecr.8b03030.
- 9. Dong H., Brook M.A., Brennan J.D., 2005. A new route to monolithic methylsilsesquioxanes: gelation behavior of methyltrimethoxysilane and morphology of resulting methyl-silsesquioxanes under one-step and two-step processing. Chem. Mater., 17, 2807–2816. DOI: 10.1021/cm050271e.
- 10. Gac J.M., 2015. A simple numerical model of pressure drop dynamics during the filtration of liquid aerosols on fibrous filters. Sep. Sci. Technol., 50, 2015–2022. DOI: 10.1080/01496395.2015.1014496.
- 11. Haq E.U., Zaidi S.F.A., Zubair M., Karim M.R.A., Padmanabhan S.K., Licciulli A., 2017. Hydrophobic silica aerogel glassfibre composite with higher strength and thermal insulation based on methyltrimethoxysilane (MTMS) precursor. Energy Build., 151, 494–500. DOI: 10.1016/j.enbuild.2017.07.003.
- 12. Hüsing N., Schubert U., 1998. Aerogels–airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed., 37, 22–45. DOI: 10.1002/(SICI)1521-
- 13. Ismail W. N. W., 2016. Sol–gel technology for innovative fabric finishing – a review. J. Sol-Gel Sci. Technol., 78, 698–707. DOI: 10.1007/s10971-016-4027-y.
- 14. Jackiewicz A., Werner Ł., 2015. Separation of nanoparticles from air using melt-blown filtering media. Aerosol Air Qual. Res., 15, 2422–2435. DOI: 10.4209/aaqr.2015.04.0236.
- 15. Joung Y.C., Park J.C., Kim M.W., 2018. System for injecting functional solution for fabric and method for manufacturing fabric using same. U.S. Patent No. US9951450B2.
- 16. Kampa D., Wurster S., Buzengeiger J., Meyer J., Kasper G., 2014. Pressure drop and liquid transport through coalescence filter media used for oil mist filtration. Int. J. Multiph. Flow, 58, 313–324. DOI: 10.1016/j.ijmultiphaseflow.2013.10.007.
- 17. Kampa D., Wurster S., Meyer J., Kasper G., 2015. Validation of a new phenomenological “jump-and-channel” model for the wet pressure drop of oil mist filters. Chem. Eng. Sci., 122, 150–160. DOI: 10.1016/j.ces.2014.09.021.
- 18. Kim C.Y., Lee J.K., Kim B.I., 2008. Synthesis and pore analysis of aerogel-glass fiber composites by ambient drying method. Colloids Surf. A, 313–314, 179–182. DOI: 10.1016/j.colsurfa. 2007.04.090.
- 19. Kim S.J., Chase G., Jana S.C., 2016. The role of mesopores in achieving high efficiency airborne nanoparticle filtration using aerogel monoliths. Set. Purif. Technol., 166, 48–54. DOI: 10.1016/j.seppur.2016.04.017.
- 20. Kolb H.E., Watzek A.K., Zaghini Francesconi V., Meyer J., Dittler A., Kasper G., 2018. A mesoscale model for the relationship between efficiency and internal liquid distribution of droplet mist filters. J. Aerosol Sci., 123, 219–230. DOI: 10.1016/j.jaerosci.2018.05.013.
- 21. Liew T.P., Conder J.R., 1985. Fine mist filtration by wet filters – I. Liquid saturation and flow resistance of fibrous filters. J. Aerosol Sci., 16, 497–509. DOI: 10.1016/0021-8502(85)90002-3.
- 22. Linhares T., de Amorim M.T.P., Durães L., 2019. Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications. J. Mater. Chem. A, 7, 22768–22802. DOI: 10.1039/C9TA04811A.
- 23. Mazrouei-Sebdani Z., Naeimirad M., Peterek S., Begum H., Galmarini S., Pursche F., Malfait W.J., 2022. Multiple assembly strategies for silica aerogel-fiber combinations – A re-view. Mater. Des., 223, 111228. DOI: 10.1016/j.matdes.2022. 111228.
- 24. Mekonnen B.T., Ding W., Liu H., Guo S., Pang X., Ding Z., Seid M.H., 2021. Preparation of aerogel and its application progress in coatings: A mini overview. J. Leather Sci. Eng., 3, 25. DOI: 10.1186/s42825-021-00067-y.
- 25. Mosanenzadeh S.G., Saadatnia Z., Karamikamkar S., Park C.B., Naguib H.E., 2020. Polyimide aerogels with novel bimodal micro and nano porous structure assembly for airborne nano filtering applications. RSC Adv., 10, 22909–22920. DOI: 10.1039/D0RA03907A.
- 26. Mullins B.J., Agranovski I.E., Braddock R.D., Ho C.M., 2004. Effect of fiber orientation on fiber wetting processes. J. Colloid Interface Sci., 269, 449–458. DOI: 10.1016/S0021-9797(03)00729-X.
- 27. Nowak B., Bonora M., Gac J.M., 2022a. Modification of polypropylene fibrous filters with MTMS-based aerogel for improvement of oil mist separation properties – Experimental and theoretical study. J. Environ. Chem. Eng., 10, 107852. DOI: 10.1016/j.jece.2022.107852.
- 28. Nowak B., Bonora M., Winnik M., Gac J.M., 2023. An effect of fibrous filters modification with MTMS aerogel structure on oil mist filtration dynamics. J. Aerosol Sci., 170, 106147. DOI: 10.1016/j.jaerosci.2023.106147.
- 29. Nowak B., Bonora M., Zuzga M., Werner Ł., Jackiewicz-Zagórska A., Gac J.M., 2022b. MTMS-based aerogel structure deposition on polypropylene fibrous filter – Surface layer effect and distribution control for improvement of oil aerosol separation properties. J. Environ. Chem. Eng., 10, 108410. DOI: 10.1016/j.jece.2022.108410.
- 30. Nowak B., Gac J.M., Bojarska M., Jackiewicz A., Werner Ł., 2017. Modification of filtering materials with aerogel for improvement of oil mist separation. Inż. Ap. Chem., 1, 17–20.
- 31. Nowak B., Kawka M., Wierzchowski K., Sykłowska-Baranek K., Pilarek M., 2021. MTMS-based aerogel constructs for immobilization of plant hairy roots: Effects on proliferation of Rindera graeca biomass and extracellular secretion of naphthoquinones. J. Funct. Biomater., 12, 19. DOI: 10.3390/jfb12010019.
- 32. Ortelli S., Costa A.L., Dondi M., 2015. TiO2 nanosols applied directly on textiles using different purification treatments. Materials, 8, 7988-7996. DOI: 10.3390/ma8115437.
- 33. Patience G.S., Boffito D.C., 2020. Distributed production: Scale-up vs experience. Adv. Manuf. Process., 2, e10039. DOI: 10.1002/amp2.10039.
- 34. Penner T., Meyer J., Dittler A., 2021. Oleophilic and oleophobic media combinations – Influence on oil mist filter operating performance. Sep. Purif. Technol., 261, 118255. DOI: 10.1016/j.seppur.2020.118255.
- 35. Rao E., McVerry B., Borenstein A., Anderson M., Jordan R.S., Kaner R.B. 2018. Roll-to-roll functionalization of polyolefin separators for high-performance lithium-ion batteries. ACS Appl. Energy Mater., 1, 3292–3300. DOI: 10.1021/acsaem.8b00502.
- 36. Shams-Ghahfarokhi F., Khoddami A., Mazrouei-Sebdani Z., Rahmatinejad J., Mohammadi H., 2019. A new technique to prepare a hydrophobic and thermal insulating polyester woven fabric using electro-spraying of nano-porous silica powder. Surf. Coat. Technol., 366, 97–105. DOI: 10.1016/j.surfcoat. 2019.03.025.
- 37. Søndergaard R.R., Hösel M., Krebs F.C., 2013. Roll-to-roll fabrication of large area functional organic materials. J. Polym. Sci., Part B: Polym. Phys., 51, 16-34. DOI: 10.1002/polb.23192.
- 38. Starnoni M., Manes C., 2022. On the interplay between pressure and gravitational forces in coalescing filters. J. Aerosol Sci., 162, 105953. DOI: 10.1016/j.jaerosci.2022.105953.
- 39. Sun W., Chen D.R., 2002. Filter loading characteristics of liquid- coated particles. IAQ Filtration Conference, American Filtration and Separation (AFS) Society, Cincinnati, Ohio, USA.
- 40. Tepekiran B.N., Calisir M.D., Polat Y., Akgul Y., Kilic A., 2019. Centrifugally spun silica (SiO2) nanofibers for high-temperature air filtration. Aerosol Sci. Technol., 53, 921–932. DOI: 10.1080/02786826.2019.1613514.
- 41. Weber R.S., Snowden-Swan L.J., 2019. The economics of numbering up a chemical process enterprise. J. Adv. Manuf. Process., 1, e10011. DOI: 10.1002/amp2.10011. Wu H., Chen Y., Chen Q., Ding Y., Zhou X., Gao H., 2013.
- 42. Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermal insulation. J. Nanomater., 2013, 375093. DOI: 10.1155/2013/375093.
- 43. Xu C., Yu Y., Si X., 2021. Oil-mists coalescence performance of fibrous filters with superoleophilic and superoleophobic surface. Chem. Eng. Res. Des., 172, 235–241. DOI: 10.1016/j.cherd.2021.06.013.
- 44. Xu J., Liu C., Hsu P.-C., Liu K., Zhang R., Liu Y., Cui, Y., 2016. Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter. Nano Lett., 16, 1270–1275. DOI: 10.1021/acs.nanolett.5b04596.
- 45. Yarin A.L., Chase G.G., Liu W., Doiphode S.V., Reneker D.H., 2006. Liquid drop growth on a fibre. AIChE J., 52, 217–227. DOI: 10.1002/aic.10661.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab334b18-cdfa-4202-9a29-2bb1b58c71e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.