PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the subsidence ratio be based on seismic noise measurements in mining terrain

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wyznaczanie współczynnika osiadania be na podstawie pomiarów szumu sejsmicznego na terenie górniczym
Języki publikacji
EN
Abstrakty
EN
Subsidence process in the rock mass disturbed by mining can be complicated and can be faster or slower depending on the geological structure and physical and mechanical properties of the rock mass, changes in exploitation geometry, and changes in the rate of exploitation. The most frequently, the sub-sidence process develops over years in a way that is difficult to observe over a short period (days). It has been proven in practice of coal mines in Poland that Knothe’s model describes subsidence process with high accuracy. It is based on treating the rock mass as a stochastic medium and describing subsidence with stochastic equations.It can be assumed that, the complicated stress field as a result of mining activities induce a series of displacements of different sizes in rock mass. The inelastic deformation in rock mass is accompanied by a microseismicity that can be recorded and processed. We assumed that seismic noise with weak seismic events is a low-energy part of the microseismicity. We proposed an analytical solution to examine the distribution of the energy of the seismic noise during subsidence process development based on Knothe’s model. In general a qualitative method of subsidence process assessment by the registration of the seismic noise was described.
PL
Proces osiadania w górotworze naruszonym działalnością górniczą może być skomplikowany. Może przebiegać szybciej lub wolniej w zależności od budowy geologicznej, fizycznych i mechanicznych właściwości górotworu, zmian w geometrii eksploatacji i zmian prędkości eksploatacji. Najczęściej proces osiadania rozwija się przez lata w sposób trudny do zaobserwowania w krótkim okresie (np. dni). W praktyce udowodniono, że w kopalniach węgla w Polsce model Knothego opisuje proces osiadania z dużą dokładnością. Opiera się on na traktowaniu górotworu jako ośrodka stochastycznego i opisuje osiadanie za pomocą równań stochastycznych. Można przypuszczać, że skomplikowane pole naprężeńwytworzone w wyniku działalności górniczej wywołuje w górotworze serię przemieszczeń o różnej wielkości. Niesprężystemu odkształceniu w górotworze towarzyszy mikrosejsmiczność, która może być rejestrowana. W badaniach przyjęliśmy założenie, że szum sejsmiczny wraz ze słabymi zjawiskami sejsmicznymi należy do niskoenergetycznej części sejsmiczności. Zaproponowaliśmy rozwiązanie analityczne, w celu zbadania rozkładu energii szumu sejsmicznego w czasie rozwoju procesu osiadania w oparciu o model Knothego. W efekcie zaproponowano jakościową metodę oceny procesu osiadania poprzez rejestrację szumu sejsmicznego.
Rocznik
Strony
197--212
Opis fizyczny
Bibliogr. 65 poz., tab., wykr.
Twórcy
  • Mineral and Energy Economy Research Institute Polish Academy of Sciences, 7 Wybickiego Str., 31-261 Krakow, Poland
  • Mineral and Energy Economy Research Institute Polish Academy of Sciences, 7 Wybickiego Str., 31-261 Krakow, Poland
Bibliografia
  • [1] Alcott J., Kaiser P., Simser B., 1998. Use of microseismic source parameters for rockburst hazard assessment. Pure and Applied Geophysics 153 (1), 41-65.
  • [2] Broz M., Rocek V., 1979. Seismoacoustic and convergence measurements in the Pribram mining region prone to rock burst strata. Publ. Inst. Geophys. Pol. Acad. Sc. M-2 (123), 151-164.
  • [3] Barron K., 1971. Detection of fracture initiation in rock specimens by the use of a simple ultrasonics listening device. Int. J. Rock Mech. Min. Scs. 8, 1, 55-59.
  • [4] Barton N., 2007. Rock Quality, Seismic Velocity, Attenuation and Anisotropy. Taylor and Francis Group, London.
  • [5] Benzerga A., Besson A., Pineau J.A., 1999. Coalescence-Controlled Anisotropic Ductile Fracture. Journal of Engineering Materials and Technology 121, 221-229.
  • [6] Bodziony J., Litwiniszyn J., Smolarski A., 1960. New research into rock masses media culture treated as media characterized by stochastic equation. Proc. Int. Conf. Strata Control, Paris, 135-150.
  • [7] Boyce G.M., McCabe W.M., Koerner R.M., 1981. Acoustic emission signature of various rock types in unconfined compression. In, Drenvich and Gray (eds.) Acoustic emission in geotechnical engineering practice, ASTM STP 750, 142–154.
  • [8] Cook N.G.W., 1963. The seismic location of rockbursts. Proc. Fifth Rock Mechanics Symposium, Pergamon Press, 493-518.
  • [9] Czarny R., Marcak H., Nakata N., Pilecki Z., Isakow Z., 2016. Monitoring Velocity Changes Caused By Underground Coal Mining Using Seismic Noise. Pure and Applied Geophysics 173 (6), 1907-1916, doi: 10.1007/s00024-015-1234-3.
  • [10] Czarny R., Pilecki Z., Drzewinska D., 2018. The application of seismic interferometry for estimating a 1D S-wave velocity model with the use of mining induced seismicity. Journal of Sustainable Mining 17, 209-214, doi: 10.1016/j.jsm.2018.09.001.
  • [11] Czarny R., Pilecki Z., Nakata N., Pilecka E., Krawiec K., Harba P., Barnaś M., 2019. 3D S-wave velocity imaging of a subsurface disturbed by mining using ambient seismic noise. Engineering Geology 251, 115-127, doi: 10.1016/j.enggeo.
  • [12] Czechowski Z., 1993. A kinetic model of nucleation, propagation and fusion of cracks. J. Phys. Earth 41, 127-137.
  • [13] Dequiedt J.L., 2015. Statistics of dynamic fragmentation for a necking instability. International Journal of Solids and Structures 94, 32-44, doi: 10.1016/j.ijsolstr.2015.06.028.
  • [14] Eshelby J.D., 1961. Elastic Inclusion and Inhomogeneities. In Progress in Solid Mechanics, Vol. 2. ed. I. N. Snedonn and R. Hill, North-Holland Publishing Company, Amsterdam, 89-140.
  • [15] Filbert F., Laurencot P., 2004. Numerical simulation of the Smoluchowski coagulation equation. SIAM Journal on Scientific Computing 25, 2004-2028.
  • [16] Gale W.J., Heasley K.A., Iannacchione A.T., Swanson P.L., Hatherly P., King A., 2001. Rock Damage Characterisation from Microseismic Monitoring. Proc. of the 38th U.S. Rock Mechanics Symposium Vol. 2, Lisse, Netherlands, A.A. Balkema, 1313-1320.
  • [17] Gibowicz S., Kijko A., 1994. An Introduction to Mining Seismology. Academic Press Inc., London.
  • [18] Glowacka E., 1992. Application of the extracted deposit volume as a measure of deformation for the seismic hazard evaluation in mines. Tectonophysics 202, 285-290.
  • [19] Glowacka E., 1993. Excavated volume and long-term seismic hazard evaluation in mines. Rockburst and seismicity In mines. Second International Symposium of Rockbursts and Seismicity in Mines Young (ed.). Netherlands, A.A. Balkema, 69-73.
  • [20] Glowacka E., Pilecki Z., 1991. Seismo-acoustic anomalies and evaluation of seismic hazard at the ‘Marcel’ Coal Mine. Acta Geophysica 37, 1, 47-59.
  • [21] Goodman R., 1963. Subaudible noise during compression of rocks. Geol. Soc. Am. Bull. 74, 487-490.
  • [22] Gowd T.N., 1980. Factors affecting the AE response of triaxially compressed rock. Int. J. of Rock Mech. Min. Sci. And Geomech. Abstr. 17, 4, 219-223.
  • [23] Hardy H.R., 2003a. Acoustic Emission/Microseismic Activity 1, Principles. Techniques and Geotechnical Applications, A.A. Balkema Publishers.
  • [24] Hardy H.R., 2003b. Acoustic Emission/Microseismic Activity 2. Geotechnical Field & Laboratory Applications. A.A. Balkema Publishers.
  • [25] Hosseini N., Oraee K., Shahriar K., Goshtasbi K., 2012. Passive Seismic Velocity Tomography and Geostatistical Simulation on Longwall mining Panel. Archives of Mining Sciences 57, 1, 139-155.
  • [26] Khair A.W., 1977. A study of acoustic emission during laboratory fatigue test on Tennessee sandstone. Proc. First Conf. Acoustic in Geological Structures and Material. Trans Tech Publs., Clausthal, 57-86.
  • [27] Kijko A., 1985. Theoretical model for a relationship between mining seismicity and excavation area. Acta Geophysica 33, 3, 231-242.
  • [28] Knothe S., 1953a. Influence of time on the formation of subsidence trough. Archives of Mining and Metallurgy I, 1, 128-139 (in Polish).
  • [29] Knothe S., 1953b. The differential equation of displacement in the rock mass. Archives of Mining and Metallurgy I, 1, 111-127 (in Polish).
  • [30] Kornowski J., 2003. Linear Prediction of Aggregated Seismic and Seismoacoustic Energy Emitted from a Mining Longwall. Acta Montana Ser. A, 22 (129), 5-14.
  • [31] Kornowski J., Kurzeja J., 2012. Prediction of rockburst probability given seismic energy and factors defined by Export Method of Hazard Evaluation (MRG). Acta Geophysica 60, 2, 472-486.
  • [32] Koyama J., 1997. The complex process of faulting earthquakes. Kluwer Academic Publishers.
  • [33] Körmendi A., Bodoky T., Hermann L., Dianiska L., Kàlmàn T., 1986. Seismic Measurements for Safety in Mines. Geophysical Prospecting 34, 7, 1022-1037, doi: 10.1111/j.13652478.1986. tb00511.x.
  • [34] Lasocki S., 1989. Some estimates of rockburst danger in underground coal mines based on the energy of microseismic events. Proc. Fourth Conf. Acoustic Emission/Microseismic Activity in Geologic Structures and Materials, Trans Tech Publs., Clausthal, 617-633.
  • [35] Leighton F., Blake W., 1970. Rock noise source location techniques. US Bureau of Mines, RI No. 7432.
  • [36] Leighton F.W., Steblay B.J., 1977. Applications of Microseismics in Coal Mines. Ser. Rock Soil Mech. 2, 3, 205-229.
  • [37] Litwiniszyn J., 1964. On certain linear and non-linear models. Proc. Fourth Int. Conf. on Loss Control, Columbia Univ. New York, 384-395.
  • [38] Li T.,. Cai M.F., 2007. A Review of Mining-Induced Seismicity in China. Int. J. Rock Mech. Min. Scs. and Geomechanice Abstracts 44, 8, 1149-1171.
  • [39] Malamud B.D., Turcotte L.D., 2000. Cellular-Automata models applied to natural hazards. IEEE Computing in Science & Engineering 2, 3, 42-51.
  • [40] Main I.G., 1995. Earthquakes as critical phenomena: Implications for probabilistic seismic hazard analysis. Bulletin of the Seismological Society of America 85, 5, 1299-1308.
  • [41] Main I.G., Kun F., Bell A.F., 2017. Crackling Noise in Digital and Real Rocks-Implications for Forecasting Catastrophic Failure in Porous Granular Media. In Salje, Saxena and Planes (eds.) Avalanches in Functional Materials and Avalanches, Springer International Publishing AG:77- 97.
  • [42] Maxwell S.C., Young R.P., 1996. Seismic Imaging of Rock Mass Responses to Excavation. Int. J. Rock Mech. Min. Scs. and Geomechanics Abstracts 33, 7, 713-724.
  • [43] Marcak H., 1998. Model for changes in seismoacoustic parameters in mines. Proc. Sixth Conf. AE/MA Activity in Geological Structures and Materials, Clausthal-Zellerfeld Trans Tech Publ., 339-346.
  • [44] Mei J., Lu J., 1987. The Phenomena, Prediction and Control of Rockbursts in China. Proc. Sixth International Society for Rock Mechanics 2, 1135-1140.
  • [45] Mogi K., 1977. Dilatancy of rock under general triaxial stress states with special reference to earth-quake precursors. J. Phys. Earth 25, 203-217.
  • [46] Molinari A., Mercier S., Jacques N., 2014. Dynamic failure of ductile materials. Proc. of the 23rd International Congress of Theoretical and Applied Mechanics, ICTAM 2012, Vol. 10, 201-220.
  • [47] Neyman B., Zuberek W., 1967. Seismoakustische Forschungen zum Gebirgschlag problem. Freiberger Forschungshefte C 225 Geophysik, 44-61.
  • [48] Obert L., 1941. Use of subaudible noises for the prediction of rockbursts. US Bureau of Mines, RI No. 3555 Washington DC.
  • [49] Obert L., Duvall W.I., 1942. Use of subaudible noises for the prediction of rockbursts, Part II. US Bureau of Mines, RI No. 3654, Washington DC.
  • [50] Obert L., Duvall W.I., 1975. Microseismic method of determining the stability of underground opening. US Bureau of Mines, RI No. 573 Washington DC.
  • [51] Pilecka E., 2008. An analysis of lineament directions on satellite images in the context of the occurrence of induced seismicity in the Legnica-Glogow Copper District (LGCD). Gospodarka Surowcami Mineralnymi-Mineral Resources Management 24, 2, 135-146.
  • [52] Pilecki Z., 1992. Zastosowanie rejonowej obserwacji sejsmoakustycznej do kontroli stanu zagrożenia tąpaniami (The use of zonal seismoacustic observations for rock burst hazard monitoring). Publications – Institute of Geophysics, Polish Academy of Sciences, series M, (M-16 (245)) 203-216 (in Polish).
  • [53] Pilecki Z., 1995. An Example of Rock Burst Hazard State Control Using a Zonal Seismoacoustic Observation. Proc. Fifth Conf. on Acoustic Emission/Microseismic Activity, Trans. Tech. Publications, Clausthal-Zellerfeld, 313-332.
  • [54] Pilecki Z., 1999. Dynamic analysis of mining tremor impact on excavation in coal mine. Proc. FLAC Symp. on Numerical Modeling in Geomechanics, Detournay & Hart (eds), 1-3 Sept. 1999, Minneapollis, USA, 397-400.
  • [55] Polanin P., 2015. Application of two parameter group of the Knothe-Budryk theory in subsidence prediction. Journal of Sustainable Mining 14, 2, 67-75.
  • [56] Pomeroy W.P., 1969. Seismo-acoustic measurements in a highly stressed natural environment. EOS Transactions Americans Geophysical Union 50, 5, DOI, 10.1029/EO050i005p00400–02.
  • [57] Scott D.F., Williams T.J., Tesarik D., Denton D.K., Knoll S.J., Jordan J., 2004. Geophysical Methods to Detect Stress in Underground Mines. US Department of Health and Human Services, National Institute for Occupational Safety and Health DHHS (NIOSH) Publication No. 2004-133, RI No. 9661, 1-18.
  • [58] Singh M.M., 1985. Review of coal mine subsidence. Control Measurements SME-AIME Transaction 278, Littletown, CO, 1988-1992.
  • [59] Spottiswoode S.M., 1989. Perspectives on seismic and rockburst research in the South Africa gold mining industry. 1983-1987. Pure Appl. Geophys. 129, 673-679.
  • [60] Sroka A., Knothe S., Tajdus K., Misa R., 2015a. Point movement trace vs. the range of mining exploitation effects in the rock mass. Archives of Mining Sciences 59, 4, 971-986.
  • [61] Sroka A., Knothe S., Tajdus K., Misa R., 2015b. Underground exploitation inside safety pillar shafts considering the effective use of a coal deposit. Mineral Resources Management 31, 3, 93-110.
  • [62] Vinogradov S.D., 1964. Akusticzeskije nabludenija prociessov rozruszenija gornych porod. Moskva Izdat. „Nauka” (in Russian).
  • [63] Wells D.L, Coppersmith K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bulletin of the Seismological Society of America 84, 4, 974-1002.
  • [64] Young R.P., Maxwell S.C., 1992. Seismic Characterization of a Highly Stressed Rock Mass Using Tomographic Imaging and Induced Seismicity. Journal of Geophysical Research 97, B9, 12361-12373.
  • [65] Zuberek W., Chodyń L., 1989. Practical application of the phenomena acoustic emission in rock. Archives of Acoustics 14, 1-2, 123-142.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab2d8434-8d35-47a2-a758-50fc15bdd788
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.