PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energetic efficiency of mixing in a periodically reoriented Dean flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The energetic efficiency of mixing is studied numerically in a continuous flow mixer constructed from a sequence of alternately twisted pipe bends. Counter-rotating vortices present in the curved channels and known as Dean vortices narrow the distribution of the residence time of fluid elements and accelerate the generation of a new material surface without obstructing the main flow and increasing the risk of fouling or flow stoppage. Cyclic twisting of the pipe curvature allows for quick reorientation of Dean vortices. The reorientation induces chaotic advection in a stable three-dimensional flow and speeds up mixing. The effect of computational domain discretisation for the low and medium Reynolds numbers (20 < Re < 2000º on the head loss, primary and secondary flow, residence time distribution, and the energetic efficiency of generation of the inter material surface is determined. The energetic efficiency is calculated in the time space, a standard approach in modelling reactive micromixing, and at the reactor exit. The maximum energetic efficiency is determined for Re = 600 : 700. It is also found that the initial orientation of the material surface to the pipe curvature has a significant impact on the energetic efficiency of mixing.
Rocznik
Strony
391–--410
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warszawa, Poland
Bibliografia
  • 1. Aref H., 1984. Stirring by chaotic advection. J. Fluid Mech., 143, 1–21. DOI: 10.1017/S0022112084001233.
  • 2. Aris R., 1989. Vectors, tensors and the basic equations of fluid mechanics. Dover Publications, Inc., New York.
  • 3. Bałdyga J., Rozen A., Mostert F., 1998. A model of laminar micromixing with application to parallel chemical reactions. Chem. Eng. J., 69, 7–20. DOI: 10.1016/S1385-8947(97)00101-0.
  • 4. Boesinger C., Le GuerY., Mory M., 2005. Experimental study of reactive chaotic flows in tubular reactors. AIChE J., 51, 2122–2132. DOI: 10.1002/aic.10455.
  • 5. Castelain C., Berger D., Legentilhomme P., Mokrani A., Peerhossaini H., 2000. Experimental and numerical characterisation of mixing in a steady spatially chaotic flow by means of residence time distributionmeasurements. Int. J. Heat Mass Transfer, 43, 3687–3700. DOI: 10.1016/S0017-9310(99)00363-4.
  • 6. Dean W.R., 1928. The stream-line motion of fluid in a curved pipe. Philos. Mag. J. Sci., 5, 673–695. DOI: 10.1080/14786440408564513.
  • 7. Heniche M., Tanguy P.A., Reeder M.F., Fasano J.B., 2005. Numerical investigation of blade shape in static mixing. AIChE J., 51, 44–58. DOI: 10.1002/aic.10341.
  • 8. Jones S.W., Thomas O.M., Aref H., 1989. Chaotic advection by laminar flow in a twisted pipe. J. Fluid. Mech., 209, 335–357. DOI: 10.1017/S0022112089003137.
  • 9. Khot P., Mansour M., Thevenin D., Nigam K. D. P., Zahringer K., 2019. Improving the mixing characteristics of coiled configurations by early flow inversion. Chem. Eng. Res. Des., 146, 324–335. DOI: 10.1016/j.cherd.2019.04.016.
  • 10. Kovats P., Velten C. Mansour M. Thevenin D., Zahringer K., 2020. Mixing characterisation in different helically coiled configurations by laser-induced fluorescence. Exp. Fluids, 61, 203. DOI: 10.1007/s00348-020-03035-0.
  • 11. Kumar V., Aggarwal M., Nigam K.D.P., 2006. Mixing in curved tubes. Chem. Eng. Sci., 61, 5742–5753. DOI: 10.1016/j.ces.2006.04.040.
  • 12. Liang D., Zhang S., 2014. A contraction-expansion helical mixer in the laminar regime. Chin. J. Chem. Eng., 22, 261–266. DOI: 10.1016/S1004-9541(14)60035-5.
  • 13. Manlapaz R.L., Churchill S.W., 1981. Fully developed laminar convection from a helical coil. Chem. Eng. Commun., 9, 185–200. DOI: 10.1080/00986448108911023.
  • 14. Mansour M., Koth P., Kovats P., Thevenin D., Zahringer K., Janiga G., 2020a. Impact of computational domain discretisation and gradient limiters on CFD results concerning liquid mixing in a helical pipe. Chem. Eng. J., 383, 123121. DOI: 10.1016/j.cej.2019.123121.
  • 15. Mansour M., Liu Z., Janiga G., Nigam K. D. P., Sundmacher K., Thevenin D., Zahringer K., 2017. Numerical study of liquid-liquid mixing in helical pipes. Chem. Eng. Sci., 172, 250–261. DOI: 10.1016/j.ces.2017.06.015.
  • 16. Mansour M., Thevenin D., Zahringer K., 2020b. Numerical study of flow mixing and heat transfer in helical pipes, coiled flow inverters and a novel coiled configuration. Chem. Eng. Sci., 221, 115690. DOI: 10.1016/j.ces.2020.115690.
  • 17. Mitrinovic D.S., Pecaric J.E., Fink A.M., 1993. Classical and new inequalities in analysis. Kluwert Academic Publishers, Dodrecht.
  • 18. Moulin P., Serra C., Rouch J.C., Clifton M.J., Aptel P., 1996. Mass transfer improvement by secondary flows: Dean vortices in coiled tubular membranes. J. Membr. Sci., 114, 235–244. DOI: 10.1016/0376-7388(95)00323-1.
  • 19. Mridha M., Aggarwal P., Nigam K.D.P., 2011. Liquid-liquid mixing in coiled flow inverter. Ind. Eng. Chem. Res. 50, 13230–13235. DOI: 10.1021/ie2002473.
  • 20. Nandakumar K., Masliayh J.H., 1982. Bifurcation in steady laminar flow through curved tubes. J. Fluid Mech., 119, 475–490. DOI: 10.1017/S002211208200144X.
  • 21. Ottino J.M., Ranz W.E., Macosko C.W., 1979. A lamellar model for analysis of liquid-liquid mixing. Chem. Eng. Sci., 34, 877–890. DOI: 10.1016/0009-2509(79)85145-3.
  • 22. Palmer K.J., 2009. Shadowing lemma for flows. Scholarpedia, 4, 7918. DOI: 10.4249/scholarpedia.7918.
  • 23. Rozen A., 2008. Mikromieszanie płynow rozniacych sie lepkoscia w układach z przepływem laminarnym. Prace Wydziału Inzynierii Chemicznej i Procesowej PW, XXXII (z. 1), Oficyna Wydawnicza PW.
  • 24. Rozen A., Kopytowski J., 2018. Application of the reactive tracer method to study chaotic mixing in a twisted bend mixer. Inz. Ap. Chem., 57, 3, 77–78.
  • 25. Rozen A., Kopytowski J., 2020. Experimental study of micromixing in curved tube reactors by the reactive tracer method. Chem. Eng. Res. Des., 160, 335–350. DOI: 10.1016/j.cherd.2020.04.042.
  • 26. Sawyers D.R., Sen M., Chang H.-C., 1996. Effect of chaotic interfacial stretching on bimolecular chemical reaction in helical-coil reactors. Chem. Eng. J., 64, 129–139. DOI: 10.1016/S0923-0467(96)03132-6.
  • 27. Saxena A.K., Nigam K.P.D., 1983. Laminar dispersion in helically coiled tubes of square cross section. Can. J. Chem. Eng., 61, 53–57. DOI: 10.1002/cjce.5450610109.
  • 28. Schuler J., Herath J., Kockmann N., 2021. 3D investigations of microscale mixing in helically coiled capillaries. J. Flow Chem., 11, 217–222. DOI: 10.1007/s41981-021-00161-6.
  • 29. Souvaliotis A., Jana S.C., Ottino J.M., 1995. Potentialities and limitations of mixing simulations. AIChE J., 41, 1605–1621. DOI: 10.1002/aic.690410702.
  • 30. Vashisth S., Kumar V., Nigam K.D.P., 2008. A review on the potential applications of curved geometries in proces industry. Ind. Eng. Chem. Res., 47, 3291–3371. DOI: 10.1021/ie701760h.
  • 31. Verma V., Topalovic A., Monechi G., Asludani A., Nigam K.D.P., 2020. Mixing of viscoelastic fluid flows in a coiled flow inverter. Ind. Eng. Chem. Res., 59, 3854–3864. DOI: 10.1021/acs.iecr.9b05142.
  • 32. Yamagishi A., Inaba T., Yamaguchi Y., 2007. Chaotic analysis of mixing enhancement in steady laminar flows through multiple pipe bends. Int. J. Heat Mass Transfer, 50, 1238–1247. DOI: 10.1016/j.ijheatmasstransfer.2006.09.033.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab2a7f13-9678-47e9-8b8e-592de8020e56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.