PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Fertilizer Granulates on Ionic and Weight Relations Among Macronutrients in Spring Rape Seeds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The experiment consisted in testing four fertilizer granulates produced from waste in the vegetation experiment. The waste used to produce granulates included: ash from lignite due to its deacidifying properties, industrial sewage sludge and sawdust due to considerable abundance of nutrients for plants. The recipe for the chemical composition of granulates was devised on the basis of chemical properties of the waste. The fertilizer granulates were characterized by fairly high content of calcium and organic carbon, and less of sulfur, phosphorus, potassium and magnesium. The contents of heavy metals did not exceed the permissible standards. The test plant was rapeseed of Larissa cultivar. The content of macronutrients was determined in rape seeds. The following ionic relations K:Mg, K:Ca, K:(Ca+Mg), Ca:Mg and weight proportions Ca:P and N:S, were calculated. The research indicated that the applied single doses of fertilizer granulates A, B, C and D significantly expanded the Ca:Mg ion relations, but did not affect the increase in K:Ca, K:(Ca+Mg), N:S and Ca:P in rape seeds compared to the control. Double doses of granulates compared to the single ones resulted in a significant narrowing of the ionic ratio K:Ca and significant extension of Ca:Mg and N:S in the seeds of the test plant. Triple doses of fertilizer granulates significantly reduced the ionic relations K:Ca, K:(Ca+Mg) and N:S, but did not cause changes in the Ca:Mg and Ca:P ratio in rape seeds. The aim of the study was to determine the impact of 4 granulates produced from waste on the formation of the most important ionic ratios and weight proportion of elements in the yields of spring rape seeds.
Słowa kluczowe
Rocznik
Strony
52--58
Opis fizyczny
Bibliogr. 25 poz., tab.
Twórcy
  • West Pomeranian University of Technology in Szczecin, Department of Soil Science, Grassland Mangement and Environmental Chemistry, Słowackiego17, 71-434 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Department of Soil Science, Grassland Mangement and Environmental Chemistry, Słowackiego17, 71-434 Szczecin, Poland
Bibliografia
  • 1. Antonkiewicz J. 2010. Effect of sewage sludge and furnace waste on the content of selected elements in the sward of legume-grass mixture. Journal of Elementology, 15(3), 435–443. DOI:105601/jelem.2010.15.3.435–443.
  • 2. Antonkiewicz J., Kołodziej B., Bielińska E., Gleń-Karolczyk K. 2018. The use of makroelements from municipal sewage sludge by the multiflora rose and the Virginia fanpetals. Journal of Ecological Engineering 19(6), 1–13. DOI:1012911/22998993/92889
  • 3. Barczak B., Skinder Z., Piotrowski R. 2016. Sulphur as a factor that affects nitrogen effectiveness in spring rapeseed agrotechnics. Part II. Yield of seeds and protein. Acta Sci. Pol., Agricultura 15(4), 3–14. ISSN 2300–8504 (online)
  • 4. Barczak B., Nowak K., Moskal M. 2017. Assessment of the nutritional status of narrow-leaf lupin of sulphur in full maturity under conditions of fertilization with this nutrient. Fragm. Agron. 34(3), 25–32.
  • 5. Gaj R. 2010.Effect of different level of potassium fertilization on Winter oilseed rape nutritional status at the initation of the main stem growth and on the field. Oilseed Crops XXXI:115–124
  • 6. Grygierzec B., Luty L., Musiał K. 2015. The efeciency of nitrogen and sulphur fertilization on Fields and value of N:S ratio for LoliumxBoucheanum. Plant Soil Environ. 61(3), 137–143. DOI:. org/10.17221/1005/2014-PSE
  • 7. Grzebisz W., Przygocka-Cyna K. 2007. Springmalt barley response to element al sulphure – the prognosticvaluse of N and S concentrations in Malt barley leaves. Plant Soil Environ. 53(9), 388–394.
  • 8. Hargreaves J.C., Adl M.S. & Warman P.R. (2008). A review of the use of composted municipal solid waste in agriculture. Agric. Ecosys. Environ., 123:1–14. DOI. 10.1016/j.agee.2007.07.004
  • 9. He M., Tian G., & Liang X. (2009). Phytotoxicity and speciation of copper, zinc and lead during the aerobics composting of savage sludge. Journal Hazard. Mater., 163:671–677. DOI.10.1016./j.hazmat.2008.07.01.
  • 10. Jarnuszewski G., Meller E. 2013. Mineral element ratios in plants grown on post-bog soils fertilised with zinc and copper. Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech. 304 (26), 25–32. (in Polish)
  • 11. Jamal A., Moon Y., Abdin M. 2010. Sulphur – a general overview and interaction with nitrogen. Austr. J.Crop Sci. 4:523–529.
  • 12. Kovàćik P., Macàk M., Ducsay L., Halcćinovà M., Janćich M. 2011. Effect of ash-fly ash mixture application on soil fertility. J. Elem. 16(2), 215–225. DOI: 10.5601/jelem.2011.16.2.05.
  • 13. Krzywy J., Krzywy E. 2001. The effect of multicomponent fertilizers on the formation of ionic ratios K:Mg, K:Ca, K:(Ca+Mg) and Ca:P in a grass mixture. Zesz. Prob. Post. Nauk Rol. 480: 253–258.
  • 14. Krzywy J., Baran S., Krzywy E. 2002. The influence of one-and multicomponent fertilizers oh the K:Mg, K:(Ca+Mg), Ca:P and N:S ionic ratios in cultivated plants. Zesz. Prob. Post. Nauk Rol. 484: 317 – 323.
  • 15. Krzywy E., Możdżer E., Wołoszyk C. 2013. Research on the use of sewage sludge from plants producing multicomponent mineral fertilizers or deacidification of soils and improvement of environmental conditions for plant development (NE Poland). Sprawozdanie końcowe projektu badawczego NN 305 358 739, 15–22.)
  • 16. Majcherczak E , Kozera W. , Nowak K. Barczak B. 2006. Contents of macronutrients and ionic ratios in spring barley grain in the conditions of foliar fertilization with micronutrients . J. Elem. 11(1), 43–48.
  • 17. Łabuda S., Filipek T., Dechnik I. 1992. The relation of oats to the differentiation of calcium and magnesium in a model experiment. Rocz. Gleb. 43:29–35.
  • 18. Podleśna A., Kocoń A. 2009. The effects of sulfur and nitro gen on field and quality of Winter oilseed rape. Sulfur metabolism in higher plants. Margraf Publishers, Germany, pp. 123–127.
  • 19. Regulation of the Minister of Natural Environment on how to conduct land surface pollution assessment dated 1 September 2016 (in Poland). Official Journal of low item. 1395 of 2016. (in Polish)
  • 20. Schung E., Haneklaus S. 2000. Significance of interactions between sulphur and nitrogen supply for growth and quality of crop plants. In: Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Eds. Brunold et al., Paul Haupt, Bern, Switzerland: 345–347.
  • 21. Šiaudnis G. 2010. The effects of nitro gen and sulphur fertilisation on the elemenetal composition and seed quality of spring oilseed rape. Zemdirbyste–Agriculture 97(4), 47–56.
  • 22. Stankowski S., Wołoszyk C. 2008. The consequent impact of organic fertilizers and nitrogen doses on yield and grain quality of winter triticale. Zesz. Prob. Post. Nauk Rol., 484: 623 – 628.
  • 23. Torri S., Zubillaga, M., Cusato M. 2009. Potential of discaria americana for metal stabilization on soils amended with biosolids and ash-spiked biosolids. Int. J. Phytoremediation, 11(2), 187–199. DOI: 10.1080/15226510802378475.
  • 24. Wyszkowski M., Ciećko Z. 2002. Effect of fertilization on relations between ions in plants. Wyd., Wieś Jutra 11:7–8.
  • 25. Wyszkowski M. 2001. The influence of magnesium on the formation of yields and mutual relations between some ions in plants. Rozprawy i Monografie, Uniwersytet Warmińsko-Mazurski, Olsztyn 52:90–95.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab260ad5-ce34-46a4-b68b-15f2e296db21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.