PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Flow Rate on CIP Cleaning Efficiency and Flow Resistance in an Installation with a Three-Section PHE

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the widespread application of plate heat exchangers (PHE) in the food industry, a key aspect of their operation is ensuring a high level of hygiene, which guarantees the microbiological cleanliness of the final product. This is achieved through the cleaning of installations containing PHE using the Clean-in-Place (CIP) system. An important aspect is the determination of flow resistance, as this enables the specification of drive parameters and the selection of a pump that provides a sufficiently high flow rate through the installation, particularly required during the pre-rinsing stage. The subject of the research was a three-section plate heat exchanger, which forms part of a prototype technological line designed for the pasteurisation of liquid egg mass and its fractions – egg white and yolk. As part of the study, the effectiveness of the cleaning process was assessed depending on the flow rate. Based on experimental results, the minimum flow rate necessary for effective cleaning using commercial sodium hydroxide (NaOH)-based cleaning agents was determined. In addition, the extent to which the relationship described in the literature – linking flow rate with hydraulic resistance in PHE – is confirmed under real operating conditions during the cleaning process in the CIP system was analysed. The results obtained may be used to optimise the parameters of the CIP process, which will contribute to increased efficiency, reduced consumption of chemical agents, and improved microbiological safety of the final product.
Słowa kluczowe
Rocznik
Strony
39--47
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr., zdj.
Twórcy
  • Centre for Sustainable Economy Łukasiewicz Research Network – Poznań Institute of Technology, Poznań, Polan
  • Centre for Sustainable Economy Łukasiewicz Research Network – Poznań Institute of Technology, Poznań, Polan
  • Centre for Sustainable Economy Łukasiewicz Research Network – Poznań Institute of Technology, Poznań, Polan
  • Centre for Sustainable Economy Łukasiewicz Research Network – Poznań Institute of Technology, Poznań, Polan
  • Poznań University of Technology, Poznań, Poland
  • Centre for Sustainable Economy Łukasiewicz Research Network – Poznań Institute of Technology, Poznań, Polan
  • Centre for Sustainable Economy Łukasiewicz Research Network – Poznań Institute of Technology, Poznań, Polan
  • Poznań University of Technology, Poznań, Poland
  • Koszalin University of Technology, Department of Mechanical and Power Engineering, Division of Food Industry Processes and Facilities, Poland
Bibliografia
  • [1] K. Maziarz et al., ‘Analysis of Haze Susceptibility in Beers with Unmalted Barley Addition Under Varying Storage Conditions’, Journal of Research and Applications in Agricultural Engineering, vol. 68, no. 2, Nov. 2023, doi: 10.53502/siwc4991.
  • [2] J. Diakun, S. Mierzejewska, and J. Przepiórka, ‘Monitorowanie parametrów czynnika myjącego w trakcie mycia w przepływie’, Postępy Techniki Przetwórstwa Spożywczego, vol. 1, pp. 34–36, 2009.
  • [3] O. Arsenyeva, O. Matsegora, P. Kapustenko, A. Yuzbashyan, and J. Jaromír Klemeš, ‘The water fouling development in plate heat exchangers with plates of different corrugations geometry’, Thermal Science and Engineering Progress, vol. 32, Jul. 2022, doi: 10.1016/j.tsep.2022.101310.
  • [4] S. Brooks and R. Roy, ‘Design and complexity evaluation of a self-cleaning heat exchanger’, Int J Heat Mass Transf, vol. 191, Aug. 2022, doi: 10.1016/j.ijheatmasstransfer.2022.122725.
  • [5] C. Spiegel, F. Aselmeyer, W. Augustin, and S. Scholl, ‘Quantification method for cleaning-in-place procedures in micro structured equipment’, Food and Bioproducts Processing, vol. 134, pp. 150–162, Jul. 2022, doi: 10.1016/j.fbp.2022.05.010.
  • [6] A. L. Bowler, S. Rodgers, D. J. Cook, and N. J. Watson, ‘Bayesian and ultrasonic sensor aided multi-objective optimisation for sustainable clean-in-place processes’, Food and Bioproducts Processing, vol. 141, pp. 23–35, Sep. 2023, doi: 10.1016/j.fbp.2023.06.010.
  • [7] L. Beckedorff, R. P. P. da Silva, G. S. M. Martins, K. V. de Paiva, J. L. G. Oliveira, and A. A. M. Oliveira, ‘Flow maldistribution and heat transfer characteristics in plate and shell heat exchangers’, Int J Heat Mass Transf, vol. 195, Oct. 2022, doi: 10.1016/j.ijheatmasstransfer.2022.123182.
  • [8] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S. A. Tassou, ‘Waste heat recovery technologies and applications’, Jun. 01, 2018, Elsevier Ltd. doi: 10.1016/j.tsep.2018.04.017.
  • [9] A. Durmuş, H. Benli, I. Kurtbaş, and H. Gül, ‘Investigation of heat transfer and pressure drop in plate heat exchangers having different surface profiles’, Int J Heat Mass Transf, vol. 52, no. 5–6, pp. 1451–1457, Feb. 2009, doi: 10.1016/j.ijheatmasstransfer.2008.07.052.
  • [10] P. Kapustenko, J. J. Klemeš, O. Arsenyeva, and L. Tovazhnyanskyy, ‘PHE (Plate Heat Exchanger) for Condensing Duties: Recent Advances and Future Prospects’, Jan. 01, 2023, MDPI. doi: 10.3390/en16010524.
  • [11] A. Kumar Rai, V. Sachan, O. Mohammed Ismael, and H. Mahdi, ‘AN EXPERIMENTAL STUDY OF HEAT TRANSFER IN A PLATE HEAT EXCHANGER’, IJARET, 2014. [Online]. Available: www.iaeme.com/ijaret.asp
  • [12] C. Gulenoglu, F. Akturk, S. Aradag, N. Sezer Uzol, and S. Kakac, ‘Experimental comparison of performances of three different plates for gasketed plate heat exchangers’, International Journal of Thermal Sciences, vol. 75, pp. 249–256, Jan. 2014, doi: 10.1016/j.ijthermalsci.2013.06.012.
  • [13] M. A. H. Mudhafar, ‘Numerical study of two-phase flow in multi-channels plate heat exchanger’, International Communications in Heat and Mass Transfer, vol. 138, Nov. 2022, doi: 10.1016/j.icheatmasstransfer.2022.106380.
  • [14] ‘https://www.csidesigns.com/blog/articles/how-do-heat-exchangers-work’, Sep. 2024.
  • [15] D. A. . Seiberling, Clean-in-place for biopharmaceutical processes. Informa Healthcare, 2008.
  • [16] Z. Kowalczuk and M. S. Tatara, ‘Improved model of isothermal and incompressible fluid flow in pipelines versus the Darcy-Weisbach equation and the issue of friction factor’, J Fluid Mech, vol. 891, 2020, doi: 10.1017/jfm.2020.131.
  • [17] Jaćimović. Nikola, M. Stamenić, and P. Kolendić, ‘A Novel Method for the Inclusion of Pipe Roughness in the Hazen-Williams Equation’, FME Transactions, vol. 43, no. 1, pp. 40–46, 2015, doi: 10.5937/fmet1501040S.
  • [18] T. Hobler, Inżynieria chemiczna Ruch ciepła i wymienniki. Warszawa: Państwowe Wydawnictwo Techniczne, 1959.
  • [19] A. A. Neagu, C. I. Koncsag, A. Barbulescu, and E. Botez, ‘Estimation of pressure drop in gasket plate heat exchangers’, Ovidius University Annals of Chemistry, vol. 27, no. 1, pp. 62–72, Jun. 2016, doi: 10.1515/auoc-2016-0011.
  • [20] S. Gusew and R. Stuke, ‘Pressure Drop in Plate Heat Exchangers for Single-Phase Convection in Turbulent Flow Regime: Experiment and Theory’, International Journal of Chemical Engineering, vol. 2019, 2019, doi: 10.1155/2019/3693657.
  • [21] S. Gusew and R. Stuke, ‘Pressure Drop in Plate Heat Exchangers for Single-Phase Convection in Turbulent Flow Regime: Experiment and Theory’, International Journal of Chemical Engineering, vol. 2019, 2019, doi: 10.1155/2019/3693657.
  • [22] F. A. S. Mota, E. P. Carvalho, and M. A. S. S. Ravagnani, ‘Modeling and Design of Plate Heat Exchanger’, in Heat Transfer Studies and Applications, 2015, pp. 165–199.
  • [23] S. Mohebbi and F. Veysi, ‘Numerical investigation of small plate heat exchangers performance having different surface profiles’, Appl Therm Eng, vol. 188, Apr. 2021, doi: 10.1016/j.applthermaleng.2021.116616
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab23ce82-93e0-449f-82de-04a1eb4c5462
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.