PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-criteria reliability optimization for a complex system with a bridge structure in a fuzzy environment: A fuzzy multi-criteria genetic algorithm approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wielokryterialna optymalizacja niezawodności złożonego systemu o strukturze mostkowej w środowisku rozmytym. Metoda rozmytego wielokryterialnego algorytmu genetycznego
Języki publikacji
EN
Abstrakty
EN
Optimizing system reliability in a fuzzy environment is complex due to the presence of imprecise multiple decision criteria such as maximizing system reliability and minimizing system cost. This calls for multi-criteria decision making approaches that incorporate fuzzy set theory concepts and heuristic methods. This paper presents a fuzzy multi-criteria nonlinear model, and proposes a fuzzy multi-criteria genetic algorithm (FMGA) for complex bridge system reliability design in a fuzzy environment. The algorithm uses fuzzy multi-criteria evaluation techniques to handle fuzzy goals, preferences, and constraints. The evaluation approach incorporates fuzzy preferences and expert choices of the decision maker in regards to cost and reliability goals. Fuzzy evaluation gives the algorithm flexibility and adaptability, yielding near-optimal solutions within short computation times. Results from computational experiments based on benchmark problems demonstrate that the FMGA approach is a more reliable and effective approach than best known algorithm, especially in a fuzzy multi-criteria environment.
PL
Optymalizacja niezawodności systemu w środowisku rozmytym to problem złożony ze względu na konieczność wzięcia pod uwagę wielu niedokładnie określonych kryteriów decyzyjnych, takich jak maksymalizacja niezawodności systemu i minimalizacja kosztów. Wymaga ona zastosowania wielokryterialnych metod podejmowania decyzji, które łączyłyby pojęcia z zakresu teorii zbiorów rozmytych oraz metody heurystyczne. W niniejszej pracy przedstawiono rozmyty wielokryterialny model nieliniowy (FMGA) oraz zaproponowano rozmyty wielokryterialny algorytm genetyczny do projektowania niezawodności złożonych systemów mostkowym w środowisku rozmytym. Algorytm wykorzystuje techniki rozmytej oceny wielokryterialnej do określania rozmytych celów, preferencji oraz ograniczeń. Metoda oceny uwzględnia rozmyte preferencje i eksperckie wybory decydenta dotyczące kosztów oraz celów niezawodnościowych. Ocena rozmyta nadaje algorytmowi cechy elastyczności oraz adaptacyjności, pozwalając na otrzymanie niemal optymalnych rozwiązań w krótkim czasie obliczeniowym. Wyniki eksperymentów obliczeniowych opartych na problemach wzorcowych pokazują, że podejście z zastosowaniem FMGA jest bardziej niezawodne i wydajne niż najbardziej znany algorytm, zwłaszcza w rozmytym środowisku wielokryterialnym.
Rocznik
Strony
450--456
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Faculty of Engineering and the Built Environment University of Johannesburg P. O. Box 524, Auckland Park 2006, Johannesburg, South Africa Faculty of Engineering, Namibia University of Science & Technology, P Bag 13388 Windhoek Namibia
autor
  • Faculty of Engineering and the Built Environment University of Johannesburg P. O. Box 524, Auckland Park 2006, Johannesburg, South Africa
  • Mechanical Engineering Department University of Botswana P Bag 0061, Gaborone, Botswana
Bibliografia
  • 1. Bag S, Chakraborty D, Roy A. R. A production inventory model with fuzzy demand and with flexibility and reliability considerations. Journal of Computers and Industrial Engineering 2009; 56: 411-416, http://dx.doi.org/10.1016/j.cie.2008.07.001.
  • 2. Bellman R, Zadeh L. Decision making in a fuzzy environment. Management Science 1970; 17: 141–164, http://dx.doi.org/10.1287/mnsc.17.4.B141.
  • 3. Bing L, Meilin Z, Kai X. A practical engineering method for fuzzy reliability analysis of mechanical structures. Reliability Engineering and System Safety 2000; 67(3): 311–315, http://dx.doi.org/10.1016/S0951-8320(99)00073-3.
  • 4. Cai K. Y, Wen C. Y, Zhang M. L. Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context. Fuzzy Sets and Systems 1991; 42: 145-172, http://dx.doi.org/10.1016/0165-0114(91)90143-E.
  • 5. Chen L. Multi-objective design optimization based on satisfaction metrics. Engineering Optimization 2001; 33: 601–617, http://dx.doi.org/10.1080/03052150108940935.
  • 6. Chen S. M. Fuzzy system reliability analysis using fuzzy number arithmetic operations. Fuzzy Sets and Systems 1994; 64 (1): 31–38, http://dx.doi.org/10.1016/0165-0114(94)90004-3.
  • 7. Chen T. C, You P. S. Immune algorithm based approach for redundant reliability problems. Computers in Industry 2005; 56 (2): 195–205, http://dx.doi.org/10.1016/j.compind.2004.06.002.
  • 8. Chen T-C. IAs based approach for reliability redundancy allocation problems. Applied Mathematics and Computation 2006; 182, 1556–1567, http://dx.doi.org/10.1016/j.amc.2006.05.044.
  • 9. Coit D.W, Smith A.E. Reliability optimization of series-parallel systems using genetic algorithm. IEEE Transactions on Reliability 1996; R-45 (2), 254-260, http://dx.doi.org/10.1109/24.510811.
  • 10. Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 2000; 186: 311–338, http://dx.doi.org/10.1016/S0045-7825(99)00389-8.
  • 11. Delgado M, Herrera F, Verdegay J. L, Vila M. A. Post optimality analysis on the membership functions of a fuzzy linear problem. Fuzzy Sets and Systems 1993; 53 (1), 289-297, http://dx.doi.org/10.1016/0165-0114(93)90400-C.
  • 12. Duque O, Morifiigo D. A fuzzy Markov model including optimization techniques to reduce uncertainty, IEEE Melecon 2004; 3 (1): 841–844, http://dx.doi.org/10.1109/melcon.2004.1348077.
  • 13. Garg H, Sharma S. P, Multi-criteria reliability-redundancy allocation problem using particle swarm optimization. Computers & Industrial Engineering 2013; 64 (1): 247-255, http://dx.doi.org/10.1016/j.cie.2012.09.015.
  • 14. Garg H. Sharma S. P. Stochastic behavior analysis of industrial systems utilizing uncertain data. ISA Transactions 2012; 51(6): 752–762, http://dx.doi.org/10.1016/j.isatra.2012.06.012.
  • 15. Giuggioli P., Marseguerra M., and Zio E. Multiobjective optimization by genetic algorithms: Application to safety systems. Reliability Engineering and System Safety, 2001; 72(1): 59–74, http://dx.doi.org/10.1016/S0951-8320(00)00109-5.
  • 16. Goldberg D. E. Genetic Algorithms: In Search, Optimization & Machine Learning. Addison-Wesley, Inc., MA, 1989.
  • 17. Hikita M, Nakagawa Y, Harihisa H. Reliability optimization of systems by a surrogate constraints algorithm. IEEE Transactions on Reliability 1992; R-41 (3): 473–480, http://dx.doi.org/10.1109/24.159825.
  • 18. Holland J. H. Adaptation in Natural and Artificial System. University of Michigan Press, Ann Arbor, MI, 1975.
  • 19. Hsieh Y.C, Chen T.C, Bricker D.L. Genetic algorithm for reliability design problems, Microelectronics and Reliability 1998; 38 (10): 1599-605, http://dx.doi.org/10.1016/S0026-2714(98)00028-6.
  • 20. Huang H. Z, Gu Y. K, Du X. An interactive fuzzy multi-criteria optimization method for engineering design. Engineering Applications of Artificial Intelligence 2006; 19(5): 451–460, http://dx.doi.org/10.1016/j.engappai.2005.12.001.
  • 21. Huang H. Z. Fuzzy multi-criteria optimization decision-making of reliability of series system. Microelectronics Reliability 1997; 37(3), 447–449, http://dx.doi.org/10.1016/S0026-2714(96)00040-6.
  • 22. Huang H. Z., Tian Z. G, Zuo M. J. Intelligent interactive multi-criteria optimization method and its application to reliability optimization. IIE Transactions 2005; 37 (11): 983–993, http://dx.doi.org/10.1080/07408170500232040.
  • 23. Kuo W, Prasad V. R. An annotated overview of system-reliability optimization. IEEE Transaction on Reliability 2000; 49 (2): 176–187, http://dx.doi.org/10.1109/24.877336.
  • 24. Mahapatra G. S, Roy T. K. Fuzzy multi-criteria mathematical programming on reliability optimization model. Applied Mathematics and Computation 2006; 174 (1): 643–659, http://dx.doi.org/10.1016/j.amc.2005.04.105.
  • 25. Mahapatra G. S, Roy P. A genetic algorithm approach for reliability of bridge network in fuzzy system. Journal of Information and Computing Science 2011; 6 (4): 243-254.
  • 26. Michalewicz Z. Genetic Algorithms + Data Structures = Evolutionary Programs. Springer, 1996, http://dx.doi.org/10.1007/978-3-662-03315-9.
  • 27. Moghaddam R. T., Safari J., and Sassani F. Reliability optimization of series–parallel systems with a choice of redundancy strategies using a genetic algorithm. Reliability Engineering and System Safety 2008; 93(4): 550–556, http://dx.doi.org/10.1016/j.ress.2007.02.009.
  • 28. Mohanta D. K, Sadhu P.K, Chakrabarti R. Fuzzy reliability evaluation of captive power plant maintenance scheduling incorporating uncertain forced outage rate and load representation. Electric Power Systems Research 2004; 72(1), 73–84, http://dx.doi.org/10.1016/j.epsr.2004.04.001.
  • 29. Mutingi M. System reliability optimization: A fuzzy multi-objective genetic algorithm approach. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2014; 16 (3): 400–406.
  • 30. Onisawa T. An application of fuzzy concepts to modeling of reliability analysis. Fuzzy Sets and Systems 1990; 37 (3): 267–286, http://dx.doi.org/10.1016/0165-0114(90)90026-3.
  • 31. Sakawa M. Fuzzy Sets and Interactive Multi-criteria Optimization. Plenum Press, New York, 1993, http://dx.doi.org/10.1007/978-1-4899-1633-4.
  • 32. Slowinski R. Fuzzy sets in decision analysis. Operations research and statistics. Boston: Kluwer Academic Publishers, 1998, http://dx.doi.org/10.1007/978-1-4615-5645-9.
  • 33. Wang Z, Chen T, Tang K, Yao X. A multi-objective approach to redundancy allocation problem in parallel-series systems. In Proceedings of IEEE Congress on Evolutionary Computation 2009: 582–589, http://dx.doi.org/10.1109/cec.2009.4982998.
  • 34. Wang Z., Tang K, Yao X. A memetic algorithm for multi-level redundancy allocation. IEEE Transactions on reliability 2010; 59(4): 754–765, http://dx.doi.org/10.1109/TR.2010.2055927.
  • 35. Wu P, Gao L, Zou D, Li S. An improved particle swarm optimization algorithm for reliability problems. ISA Transactions 2011; 50: 71-8, http://dx.doi.org/10.1016/j.isatra.2010.08.005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab1769cc-29fc-468f-b6ef-c09f9a328b3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.