PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Eliminating the adverse effect of the lime on the gold-bearing pyrrhotite flotation using the isopentyl xanthate as collector at low alkalinity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flotation optimal conditions and mechanism of regulator lime, isopentyl xanthate and butyl xanthate on pyrrhotite were investigated by flotation test, contact angle, zeta potential and infrared spectroscopic analysis. It is found that there is a certain relationship between the regulator lime and the collector isopentyl xanthate. The results of flotation indicate that lime can indeed inhibit pyrrhotite, and isopentyl xanthate can decrease the depression effect of lime on pyrrhotite in low alkalinity. The results of adsorption mechanism of lime and isopentyl xanthate show that after lime adsorbed on the pyrrhotite surface, Ca 2+inhibit the adsorption of collector with the form of Ca(OH) 2 precipitates. Compared with butyl xanthate, isopentyl xanthate could reduce the generation of hydrophilic Ca(OH) 2 and generate less hydrophilic CaCO3 as well to decrease the negative effect of gold-bearing pyrrhotite flotation depressed by lime.
Słowa kluczowe
Rocznik
Strony
1250--1258
Opis fizyczny
Bibliogr. 24 poz., rys., wykr., wz
Twórcy
autor
  • School of Resource Engineering, Xi’an University of Architecture and Technology, Xi’an, 710055, China
autor
  • School of Resource Engineering, Xi’an University of Architecture and Technology, Xi’an, 710055, China
autor
  • College of Foreign Languages, Baoji University of Arts and Sciences, Baoji 721000, China
autor
  • Faculty of Gem Stone, Shannxi Institute of International Trade & Commerce, Xi’an 712046, China
Bibliografia
  • AGORHOM, E.A., SKINNER, W., ZANIN, M., 2015. Post-regrind selective depression of pyrite in pyritic copper-gold flotation using aeration and diethylenetriamine. Minerals Engineering 72, 36-46.
  • ALLAN, G.C., WOODCOCK, J.T., 2001. A review of the flotation of native gold and electrum. Minerals Engineering 14, 931-962.
  • ARVIDSON, B., KLEMETTI, M., KNUUTINEN, T., KUUSISTO, M., MAN, Y.T., HUGES-NARBOROUGH, C., 2013. Flotation of pyrrhotite to produce magnetite concentrates with a sulphur level below 0.05% w/w. Minerals Engineering 50-51, 4-12.
  • BULATOVIC, S.M., 1997. Flotation behaviour of gold during processing of porphyry copper-gold ores and refractory goldbearing sulphides. Minerals Engineering 10, 895-908.
  • BUSWELL, A.M., BRADSHAW, D.J., HARRIS, P.J., EKMEKCI, Z., 2002. The use of electrochemical measurements in the flotation of a platinum group minerals (PGM) bearing ore. Minerals Engineering 15, 395-404.
  • DUNNE, R., 2005. Flotation of gold and gold-bearing ores, in: Adams, M.D., Wills, B.A. (Eds.), Developments in Mineral Processing. Elsevier, pp. 309-344.
  • FORREST, K., YAN, D., DUNNE, R., 2001. Optimisation of gold recovery by selective gold flotation for copper-gold-pyrite ores. Minerals Engineering 14, 227-241.
  • GAO, Z., LI, C., SUN, W., HU, Y., 2017. Anisotropic surface properties of calcite: A consideration of surface broken bonds. Colloids and Surfaces A., 520, 53-61.
  • GU, G., SUN, X., LI, J., HU, Y., 2010. Influences of collector DLZ on chalcopyrite and pyrite flotation. Journal of Central South University of Technology 17, 285-288.
  • GUL, A., KANGAL, O., SIRKECI, A.A., ONAL, G., 2012. Beneficiation of the gold bearing ore by gravity and flotation. International Journal of Minerals Metallurgy and Materials 19, 106-110.
  • GUO, B., PENG, Y., MAI, Y., 2016a. The effect of zinc cyanide on the flotation of gold from pyritic ore. Minerals Engineering 85, 106-111.
  • GUO, B., PENG, Y., PARKER, G., 2016b. Electrochemical and spectroscopic studies of pyrite-cyanide interactions in relations to the depression of pyrite flotation. Minerals Engineering 92, 78-85.
  • LI, C., GAO, Z., 2018. Tune surface physicochemical property of fluorite particles by regulating the exposure degree of crystal surfaces. Minerals Engineering 128, 123-132.
  • MONCAYO-RIASCOS, I., Hoyos, B.A., 2017. Effect of collector molecular structure on the wettability of gold for froth flotation. Applied Surface Science 420, 691-699.
  • MOSLEMI, H., GHARABAGHI, M., 2017. A review on electrochemical behavior of pyrite in the froth flotation process. Journal of Industrial and Engineering Chemistry 47, 1-18.
  • QIN, W., WANG, X., MA, L., JIAO, F., LIU, R., GAO, K., 2015. Effects of galvanic interaction between galena and pyrite on their flotation in the presence of butyl xanthate. Transactions of Nonferrous Metals Society of China 25, 3111-3118.
  • SUN, W., LIU, R., CAO, X., HU, Y., 2006. Flotation separation of marmatite from pyrrhotite using DMPS as depressant. Transactions of Nonferrous Metals Society of China 16, 671-675.
  • WANG, J., GAN, X., ZHAO, H., HU, M., LI, K., QIN, W., QIU, G., 2016. Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis. Minerals Engineering 98, 264- 278.
  • XIAO, W., JIAO, F., ZHAO, H., QIN, W., QIU, G., WANG, J., 2018a. Adsorption Structure and Mechanism of Styryl Phosphoric Acid at the Rutile-Water Interface. Minerals 8(8), 360.
  • XIAO, W., KE, S., QUAN, N., ZHOU, L., WANG, J., ZHANG, L., DONG, Y., QIN, W., QIU, G., HU, J., 2018b. The role of nanobubbles in the precipitation and recovery of organic-phosphine-containing beneficiation wastewater. Langmuir 34, 6217-6224.
  • XIAO, W., ZHAO, Y., YANG, J., REN, Y., YANG, W., HUANG, X., ZHANG, L., 2019. Effect of sodium oleate on the adsorption morphology and mechanism of nanobubbles on the mica surface. Langmuir 35, 9239-9245.
  • YALCIN, E., KELEBEK, S., 2011. Flotation kinetics of a pyritic gold ore. International Journal of Mineral Processing 98, 48-54.
  • YU, J., GE, Y., CAI, X., 2016. The desulfurization of magnetite ore by flotation with a mixture of xanthate and dixanthogen. Minerals 6, 70.
  • ZHANG, Y., CAO, Z., CAO, Y., SUN, C., 2013. FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces. Journal of Molecular Structure 1048, 434-440.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab16f721-bc46-49b5-ad06-ddfb1e783e38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.