Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study applies advanced computational fluid dynamics (CFD) simulations to enhance the safety of an aircraft’s fuel system by striving to minimize the risk of on-board fire hazards. Employing a detailed flow simulation model, this research assesses the efficacy of newly designed measures within a fuel system, designed for a modified radial engine on a test-bed AN 2 airplane. The model simulates internal airflow, droplet particle flow, the formation of Eulerian Wall Film, and the vaporization process from the fuel film within the enclosure of the aircraft’s equipment bay. By exploring both the original and modified geometries of this fuel system enclosure, the simulations provide insights into the flowpaths of leaking fuel, the spatial and temporal distribution of fuel vapor concentrations, and the overall effectiveness of design modifications aimed at rapid removal of hazardous substances. Structural improvements, including the addition of strategic ventilation inlets and outlets, are proposed based on the simulation results to ensure rapid dispersion of vapors and minimal residual fuel, effectively reducing the potential for vapor ignition. This study thus underscores the potential of precise CFD modelling in identifying risks and developing robust fire hazard mitigation strategies in aviation fuel systems.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
66--92
Opis fizyczny
Bibliogr. 12 poz., fot., rys.
Twórcy
autor
- Łukasiewicz Research Network - Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw, Poland
Bibliografia
- [1] Pénelon T., Debuy V., Truchot B., Wagner C., Donnat L., Lechaudel JF. Pool evaporation: Experimental tests at medium-scale with gasoline. J Loss Prev Process Ind [Internet]. 2020;65(2020):104072. Available from: https://doi.org/10.1016/j.jlp.2020.104072
- [2] Galeev A., Ponikarov S., Salin A. Numerical simulation of evaporation of volatile liquids. J Loss Prev Process Ind [Internet]. 2015;38:39-49. Available from: https://doi.org/10.1016/j.jlp.2015.08.011
- [3] Tamanini F. Explosive volume formation from the release of vapors or liquids in enclosures. Fire Saf Sci Proc Seventh Int Symp Fire Saf Sci [Internet]. 2003:247-58. Available from: https://doi.org/10.3801/IAFSS.FSS.7-247
- [4] Heynes OR., Clutter JK. Assessing explosion hazards in gas turbine enclosures. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 4-7 January 2011, Orlando, Florida [Internet]. 2012. Available from: https://doi.org/10.2514/6.2011-527
- [5] Zschaeck G., Frank T., Burns AD. CFD modelling and validation of wall condensation in the presence of non-condensable gases. Nucl Eng Des [Internet]. 2014;279:137-46. Available from: https://doi.org/10.1016/j.nucengdes.2014.03.007
- [6] Ambrosini W., Forgione N., Oriolo F., Dannoehl C., Konle HJ. Experiments and CFD analyses on condensation heat transfer on a flat plate in a square crosssection channel. In: 11. International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH 11); 2005 Oct 2-6; Avignon, France.
- [7] Hemighaus G., Boval T., Bacha J., Barnes F., Franklin M., Gibbs L., Hogue N., Jones J., Lesnini D., Lind J., Morris J. Aviation Fuels Technical Review [Internet]. Chevron Products Comapny; 2006. Technical Report. Available from: https://www.chevron.com/-/media/chevron/operations/documents/aviation-tech-review.pdf
- [8] US EPA [Internet]. AP 42, Fifth Edition, Volume I Chapter 7: Liquid Storage Tanks | US EPA; 2020 Jun [cited 2023 Nov 29]. Available from: https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-fifth-edition-volume-i-chapter-7-liquid-storage-0
- [9] Compton TJ. Flight Performance Testing of Ethanol/100LL Fuel Blends During Cruise Flight [Internet]. Waco: Baylor University; 2008. Available from: https://baylor-ir.tdl.org/server/api/core/bitstreams/06e27a1a-6d13-4180-9aca-4c629791a8a6/content
- [10] Ansys Fluent Theory Guide [Internet]. U.S.A.: ANSYS, In; 2021. Available from: https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/Fluent/Ansys_Fluent_Theory_Guide.pdf
- [11] Hartman EP., Biermann D. The Aerodynamic Characteristics of Full-Scale Propellers Having 2, 3, and 4 Blades of Clark Y and R.A.F. 6 Airfoil Sections [Internet]. NACA; 1938 Jan. NACA-TR-640. Available from: https://ntrs.nasa.gov/api/citations/19930091715/downloads/19930091715.pdf
- [12] Bukowski J., Łucjanek W. Napęd śmigłowy. Teoria i konstrukcja [Propeller Propulsion, Theory and Design]. Warszawa: Wydawnictwo MON; 1986. [in Polish].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab122876-93fb-4de5-9ca6-e98d47305b08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.