Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
At the current stage of diagnostics and therapy, it is necessary to perform a geometric evaluation of facial skull bone structures basing upon virtually reconstructed objects or replicated objects with reverse engineering. The objective hereof is an analysis of imaging precision for cranial bone structures basing upon spiral tomography and in relation to the reference model with the use of laser scanning. Evaluated was the precision of skull reconstruction in 3D printing, and it was compared with the real object, topography model and reference model. The performed investigations allowed identifying the CT imaging accuracy for cranial bone structures the development of and 3D models as well as replicating its shape in printed models. The execution of the project permits one to determine the uncertainty of components in the following procedures: CT imaging, development of numerical models and 3D printing of objects, which allows one to determine the complex uncertainty in medical applications.
Wydawca
Czasopismo
Rocznik
Tom
Strony
83--95
Opis fizyczny
Bibliogr. 31 poz., fot., rys., tab.
Twórcy
autor
- Cracow University of Technology, Faculty of Mechanical Engineering, Poland
- State University of Applied Science, Nowy Sącz, Poland
autor
- Jagiellonian University Medical College, Faculty of Medicine, Dental Institute, Department of Dental Prosthodontics, Cracow, Poland
autor
- Cracow University of Technology, Faculty of Mechanical Engineering, Poland
autor
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, Cracow, Poland
Bibliografia
- [1] D. Mitsouras, P. Liacouras, A. Imanzadeh, A.A. Giannopoulos, T. Cai, K.K. Kumamaru, and V.B. Ho. Medical 3D printing for the radiologist. RadioGraphics, 35(7):1965–1988, 2015. doi: 10.1148/rg.2015140320.
- [2] F. Paulsen and J. Wasche. Sobotta Atlas of Human Anatomy, General anatomy and musculoskeletal system. Vol. 1, 2013.
- [3] G.B. Kim, S. Lee, H. Kim, D.H. Yang, Y.H. Kim, Y.S. Kyung, and S.U. Kwon. Three-dimensional printing: basic principles and applications in medicine and radiology. Korean Journal of Radiology, 17(2):182–197, 2016. doi: 10.3348/kjr.2016.17.2.182.
- [4] J.W. Choi and N. Kim. Clinical application of three-dimensional printing technology in craniofacial plastic surgery. Archives of Plastic Surgery, 42(3):267–277, 2015. doi: 10.5999/aps.2015.42.3.267.
- [5] J.E. Loster, M.A. Osiewicz, M. Groch, W. Ryniewicz, and A. Wieczorek. The prevalence of TMD in Polish young adults. Journal of Prosthodontics, 26(4):284–288, 2017. doi: 10.1111/jopr.12414.
- [6] A.S. Soliman, L. Burns, A. Owrangi, Y. Lee, W.Y. Song, G. Stanisz, and B.P. Chugh. A realistic phantom for validating MRI-based synthetic CT images of the human skull. Medical Physics, 44:4687–4694, 2017. doi: 10.1002/mp.12428.
- [7] F. Heckel, S. Zidowitz, T. Neumuth, M. Tittmann, M. Pirlich, and M. Hofer. Influence of image quality on semi-automatic 3D reconstructions of the lateral skull base for cochlear implantation. In CURAC, 129–134, 2016.
- [8] G. Budzik, T. Dziubek, and P. Turek. Basic factors affecting the quality of tomographic images. Problems of Applied Sciences, 3:77–84, 2015. (in Polish)
- [9] S. Singare, C. Shenggui and N. Li. The Benefit of 3D Printing in Medical Field: Example Frontal Defect Reconstruction. Journal of Material Sciences & Engineering, 6(2):335, 2017. doi: 10.4172/2169-0022.1000335.
- [10] A. Ryniewicz, K. Ostrowska, R. Knapik,W. Ryniewicz, M. Krawczyk, J. Sładek, and Ł. Bojko. Evaluation of mapping of selected geometrical parameters in computer tomography using standards. Przegląd Elektrotechniczny, 91(6):88–91, 2015. (in Polish) doi: 10.15199/48.2015.06.17.
- [11] R. Kaye, T. Goldstein, D. Zeltsman, D.A. Grande, and L.P. Smith. Three dimensional printing: a review on the utility within medicine and otolaryngology. International Journal of Pediatric Otorhinolaryngology, 89:145-148, 2016. doi: 10.1016/j.ijporl.2016.08.007.
- [12] G.T. Grant and P.C. Liacouras. Craniofacial Applications of 3D Printing. In: 3D Printing in Medicine: A Practical Guide for Medical Professionals. Rybicki, Frank J., Grant, Gerald T. (Eds.), Springer, Cham, Switzerland, pp. 43–50, 2017. doi: 10.1007/978-3-319-61924-8_5.
- [13] T. Cai, F.J. Rybicki, A.A. Giannopoulos, K. Schultz, K.K. Kumamaru, P. Liacouras, and D. Mitsouras. The residual STL volume as a metric to evaluate accuracy and reproducibility of anatomic models for 3D printing: application in the validation of 3D-printable models of maxillofacial bone from reduced radiation dose CT images. 3D Printing in Medicine, 1(1):2, 2015. doi: 10.1186/s41205-015-0003-3.
- [14] T.Y. Hsieh, B. Cervenka, R. Dedhia, E.B. Strong, and T. Steele. Assessment of a patient-specific, 3-dimensionally printed endoscopic sinus and skull base surgical model. JAMA Otolaryngology–Head & Neck Surgery, 144(7):574-579, 2018. doi: 10.1001/jamaoto. 2018.0473.
- [15] Y.W. Chen, C.T. Shih, C.Y. Cheng, and Y.C. Lin. The development of skull prosthesis through active contour model. Journal of Medical Systems, 41:164, 2017. doi: 10.1007/s10916-017-0808-2.
- [16] J.S. Naftulin, E.Y. Kimchi, and S.S. Cash. Streamlined, inexpensive 3D printing of the brain and skull. PLoS One, 10(8):e0136198, 2015. doi: 10.1371/journal.pone.0136198.
- [17] A. Ryniewicz, K. Ostrowska, Ł. Bojko, and J. Sładek. Application of non-contact measurement methods for the evaluation of mapping the shape of solids of revolution. Przegląd Elektrotechniczny, 91(5):21–24, 2015. (in Polish). doi: 10.15199/48.2015.05.06.
- [18] V. Favier, N. Zemiti, O.C. Mora, G. Subsol, G. Captier, R. Lebrun. and B. Gilles. Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation – A first step to create reliable customized simulators. PloS One, 12(12): e0189486, 2017. doi: 10.1371/journal.pone.0189486.
- [19] M.P. Chae,W.M. Rozen, P.G. McMenamin, M.W. Findlay, R.T. Spychal, and D.J. Hunter-Smith. Emerging applications of bedside 3D printing in plastic surgery. Frontiers in Surgery, 2:25, 2015. doi: 10.3389/fsurg.2015.00025.
- [20] J.A. Sładek. Coordinate Metrology. Accuracy of Systems and Measurements. Springer, 2015.
- [21] ISO 15530-3:2011: Geometrical product specifications (GPS) – Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement – Part 3: Use of calibrated workpieces or measurement standards.
- [22] A. Marro, T. Bandukwala, and W. Mak. Three-dimensional printing and medical imaging: a review of the methods and applications. Current Problems in Diagnostic Radiology, 45(1): 2–9, 2016. doi: 10.1067/j.cpradiol.2015.07.009.
- [23] A. Ryniewicz. Evaluation of the accuracy of the surface shape mapping of elements of biobearings in in vivo and in vitro tests. Scientific Works of the Warsaw University of Technology. Mechanics, 248:3–169, 2013. (in Polish).
- [24] B.M. Mendez, M.V. Chiodo, and P.A. Patel. Customized “In-Office” three-dimensional printing for virtual surgical planning in craniofacial surgery. The Journal of Craniofacial Surgery, 26(5):1584–1586, 2015. doi: 10.1097/SCS.0000000000001768.
- [25] J.J. de Lima Moreno, G.S. Liedke, R. Soler, H.E.D. da Silveira, and H.L.D. da Silveira. Imaging factors impacting on accuracy and radiation dose in 3D printing. Journal of Maxillofacial and Oral Surgery, 17(4):582–587, 2018. doi: 10.1007/s12663-018-1098-z.
- [26] S.W. Park, J.W. Choi, K.S. Koh and T.S. Oh. Mirror-imaged rapid prototype skull model and pre-molded synthetic scaffold to achieve optimal orbital cavity reconstruction. Journal of Oral and Maxillofacial Surgery, 73(8):1540–1553, 2015. doi: 10.1016/j.joms.2015.03.025.
- [27] K.M. Day, P.M. Phillips, and L.A. Sargent. Correction of a posttraumatic orbital deformity using three-dimensional modeling, Virtual surgical planning with computer-assisted design, and three-dimensional printing of custom implants. Craniomaxillofacial Trauma and Reconstruction, 11(01):078–082, 2018. doi: 10.1055/s-0037-1601432.
- [28] Y.C. Lin, C.Y. Cheng, Y.W. Cheng, and C.T. Shih. Skull repair using active contour models. Procedia Manufacturing, 11: 2164–2169, 2017. doi: 10.1016/j.promfg.2017.07.362.
- [29] J.N. Winer, F.J. Verstraete, D.D. Cissell, S. Lucero, K.A. Athanasiou and B. Arzi. The application of 3-dimensional printing for preoperative planning in oral and maxillofacial surgery in dogs and cats. Veterinary Surgery, 46(7):942–951, 2017. doi: 10.1111/vsu.12683.
- [30] J.Y. Lim, N. Kim, J.C. Park, S.K. Yoo, D.A. Shin, and K.W. Shim. Exploring for the optimal structural design for the 3D-printing technology for cranial reconstruction: a biomechanical and histological study comparison of solid vs. porous structure. Child’s Nervous System, 33(9):1553–1562, 2017. doi: 10.1007/s00381-017-3486-y.
- [31] W. Shui, M. Zhou, S. Chen, Z. Pan, Q. Deng, Y. Yao, H. Pan, T. He, and X. Wang. The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques. International Journal of Computer Assisted Radiology and Surgery, 12(1):13–23, 2017. doi: 10.1007/s11548-016-1461-9.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab0dca37-290e-430a-82aa-f9f3a9f1c81e