PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Consideration of the uncertainty in the dimensioning of a gearbox of a wind turbine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the design approach of a subdefinite mechatronic system and focuses on the sizing stage of a gearbox of a wind turbine based on the interval computation method. Indeed, gearbox design variables are expressed by intervals to take into account the uncertainty in the estimation of these parameters. The application of the interval computation method allows minimizing the number of simulations and enables obtaining a set of solutions instead of a single one. The dynamic behavior of the gearbox is obtained using the finite element method. The challenge here is to get convergent results with intervals that reflect the efficiency of the applied method. Thus, several mathematical formulations have been tested in static study and evaluated in the case of a truss. Then the interval computation method was used to simulate the behavior of the wind turbine gearbox.
Rocznik
Strony
67--79
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Laboratory of Mechanics, Modelling and Production (LA2MP), National School of Engineering of Sfax, University of Sfax, Tunisia
autor
  • Laboratory of Mechanics, Modelling and Production (LA2MP), National School of Engineering of Sfax, University of Sfax, Tunisia
  • Laboratory of Mechanics, Modelling and Production (LA2MP), National School of Engineering of Sfax, University of Sfax, Tunisia
  • Quartz EA7393, Supm´eca-Paris, Saint-Ouen, France
  • Laboratory of Mechanics, Modelling and Production (LA2MP), National School of Engineering of Sfax, University of Sfax, Tunisia
Bibliografia
  • 1. Alefeld G., Mayer G., 2000, Interval analysis: theory and applications, Journal of Computational and Applied Mathematics, 121, 421-464.
  • 2. Amendola G., Dimino I., Concilio A., Amoroso F., Pecora R., 2017, Preliminary design of an adaptive aileron for the next generation regional aircraft, Journal of Theoretical and Applied Mechanics, 55, 307-316.
  • 3. Chaari R., Khabou M.T., Barkallah M., Chaari F., Haddar M., 2016, Dynamic analysis of gearbox behaviour in milling process: non-stationary operations, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230, 3372-3388.
  • 4. Dieterle W., 2005, Mechatronic systems: automotive applications and modern design methodologies, Annual Reviews in Control, 29, 273-277.
  • 5. Fang S.-E., Zhang Q.-H., Ren W.-X., 2015, An interval model updating strategy using interval response surface models, Mechanical Systems and Signal Processing, 60, 909-927.
  • 6. Faroughi S., Lee J., 2015, Analysis of tensegrity structures subject to dynamic loading using a Newmark approach, Journal of Building Engineering, 2, 1-8.
  • 7. Gilewski W., Pełczyński J., Rzeżuchowski T., Wąsowski J., 2015, Truss structures with uncertain parameters-geometrical interpretation of the solution based on properties of convex sets, Procedia Engineering, 111, 249-253.
  • 8. Guizani A., Hammadi M., Choley J.-Y., Soriano T., Abbes M.S., Haddar M., 2014, Multidisciplinary approach for optimizing mechatronic systems: application to the optimal design of an electric vehicle, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 56-61.
  • 9. Habib M.K., 2007, Mechatronics – A unifying interdisciplinary and intelligent engineering science paradigm, IEEE Industrial Electronics Magazine, IEEE, 1, 12-24.
  • 10. Hammadi M., Choley J.-Y., Penas O., Riviere A., 2012, Multidisciplinary approach for modelling and optimization of Road Electric Vehicles in conceptual design level, Electrical Systems for Aircraft, Railway and Ship Propulsion, 1-6.
  • 11. Hamza G., Choley J.-Y., Hammadi M., Riviere A., Barkallah M., Louati J., Haddar M., 2015, Pre-designing of a mechatronic system using an analytical approach with Dymola, Journal of Theoretical and Applied Mechanics, 53, 697-710.
  • 12. Hansen E., Sengupta S., 1981, Bounding solutions of systems of equations using interval analysis, BIT Numerical Mathematics, 21, 203-211.
  • 13. Henriot G., 1978, Traité théorique et pratique des engrenages, Tome II: Etude complète du matériel, 4 edit., Paris, Dunod Technique.
  • 14. Hughes T.J., 2012, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Corporation.
  • 15. Karnopp D.C., Margolis D.L., Rosenberg R.C., 2012, System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems, John Wiley & Sons.
  • 16. Ma Y., Liang Z., Chen M., Hong J., 2013, Interval analysis of rotor dynamic response with uncertain parameters, Journal of Sound and Vibration, 332, 3869-3880.
  • 17. Martins J.R., Lambe A.B., 2013, Multidisciplinary design optimization: a survey of architectures, AIAA Journal, 51, 2049-2075.
  • 18. Neumaier A., 1999, A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott enclosure for linear interval equations, Reliable Computing, 5, 131-136.
  • 19. Nirmala T., Datta D., Kushwaha H., Ganesan K., 2013, The determinant of an interval matrix using Gaussian elimination method, International Journal of Pure and Applied Mathematics, 88, 15-34.
  • 20. Trabelsi H., Yvars P.-A., Louati J., Haddar M., 2012, Effectiveness of an interval computation approach to the dynamic simulation of a Macpherson suspension system, 9th France-Japan and 7th Europe-Asia Congress on Mechatronics (MECATRONICS)/13th International Workshop on Research and Education in Mechatronics (REM), 78-85.
  • 21. Vittal S., Teboul M., 2005, Performance and reliability analysis of wind turbines using Monte Carlo methods based on system transport theory, 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2218.
  • 22. Zienkiewicz O.C., Taylor R.L., 2005, The Finite Element Method for Solid and Structural Mechanics, Elsevier.
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab0b7e49-13dd-4267-92d5-cce51a843288
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.