Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Urban flood hazard prediction should effectively balance accuracy and interpretability. This paper compares the performances of the Frequency Ratio method, a simple statistical technique, and XGBoost, a state-of-the-art machine learning algorithm for flood Hazard mapping in Beni Mellal (Morocco). The dataset was derived from preprocessed and standardized Sentinel-2 and Landsat 8 images, a Digital Elevation Model, and geological and soil maps. A flood inventory map was produced, it was then divided into training and testing subsets in the ratio of 70:30 for model calibration and validation, respectively. The FR method highlights key geographical variables such as slope, proximity to rivers, and vegetation indices to deliver rapid, interpretable flood risk assessments. In contrast, XGBoost captures complex, nonlinear relationships by integrating natural and anthropogenic factors for precise risk mapping. The results indicate that while FR is efficient for preliminary assessments in data-scarce environments, XGBoost significantly outperforms it in accuracy, reliability, and detailed hazard differentiation. XGBoost achieved an area under the curve (AUC) of 90.71% in testing datasets compared to 86.1% for FR. Flood distribution analysis showed that FR identified 21.3% of the study area as low-risk and 11.3% as very high-risk, suitable for broad evaluations. XGBoost, however, mapped 73.0% as very low-risk and 12.0% as very high-risk, making it valuable for resource-efficient interventions. This study highlights the complementary strengths of both approaches and advocates for integrating FR’s rapid insights with XGBoost’s precision. Together, they provide a robust framework for comprehensive flood hazard management in semi-arid regions, balancing strategic planning with localized interventions.
Wydawca
Rocznik
Tom
Strony
265--284
Opis fizyczny
Bibliogr. 50 poz., rys., tab
Twórcy
autor
- Data Science for Sustainable Earth Laboratory (Data4Earth), Faculty of Sciences and Technics, Sultan Moulay Slimane University, 23000 Beni Mellal, Morocco
autor
- Data Science for Sustainable Earth Laboratory (Data4Earth), Faculty of Sciences and Technics, Sultan Moulay Slimane University, 23000 Beni Mellal, Morocco
autor
- Data Science for Sustainable Earth Laboratory (Data4Earth), Faculty of Sciences and Technics, Sultan Moulay Slimane University, 23000 Beni Mellal, Morocco
autor
- Data Science for Sustainable Earth Laboratory (Data4Earth), Faculty of Sciences and Technics, Sultan Moulay Slimane University, 23000 Beni Mellal, Morocco
autor
- Data Science for Sustainable Earth Laboratory (Data4Earth), Faculty of Sciences and Technics, Sultan Moulay Slimane University, 23000 Beni Mellal, Morocco
Bibliografia
- 1. Abdrabo, K. I., Kantoush, S. A., Saber, M., Sumi, T., Habiba, O. M., Elleithy, D., & Elboshy, B. (2020). Integrated Methodology for Urban Flood Risk Mapping at the Microscale in Ungauged Regions : A Case Study of Hurghada, Egypt. Remote Sensing, 12(21), 3548. https://doi.org/10.3390/rs12213548
- 2. Alipour, A., Ahmadalipour, A., Abbaszadeh, P., & Moradkhani, H. (2020). Leveraging machine learning for predicting flash flood damage in the Southeast US. Environmental Research Letters, 15(2), 024011. https://doi.org/10.1088/1748-9326/ab6edd
- 3. Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models : Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232. https://doi.org/10.1111/J.1365-2664.2006.01214.X
- 4. Almouctar, M. A. S., Wu, Y., An, S., Yin, X., Qin, C., Zhao, F., & Qiu, L. (2024). Flood risk assessment in arid and semi-arid regions using Multi-criteria approaches and remote sensing in a data-scarce region. Journal of Hydrology: Regional Studies, 54, 101862. https://doi.org/10.1016/j.ejrh.2024.101862
- 5. Anaya-Romero, M., Abd-Elmabod, S. K., Muñoz-Rojas, M., Castellano, G., Ceacero, C. J., Alvarez, S., Méndez, M., & De la Rosa, D. (2015). Evaluating Soil Threats Under Climate Change Scenarios in the Andalusia Region, Southern Spain. Land Degradation & Development, 26(5), 441–449. https://doi.org/10.1002/ldr.2363
- 6. Antzoulatos, G., Kouloglou, I.-O., Bakratsas, M., Moumtzidou, A., Gialampoukidis, I., Karakostas, A., Lombardo, F., Fiorin, R., Norbiato, D., Ferri, M., Symeonidis, A., Vrochidis, S., & Kompatsiaris, I. (2022). Flood Hazard and Risk Mapping by Applying an Explainable Machine Learning Framework Using Satellite Imagery and GIS Data. Sustainability, 14(6), 3251. https://doi.org/10.3390/su14063251
- 7. Arabameri, A., Chandra Pal, S., Costache, R., Saha, A., Rezaie, F., Seyed Danesh, A., Pradhan, B., Lee, S., & Hoang, N.-D. (2021). Prediction of gully erosion susceptibility mapping using novel ensemble machine learning algorithms. Geomatics, Natural Hazards and Risk, 12(1), 469–498. https://doi.org/10.1080/19475705.2021.1880977
- 8. Arabameri, A., Pal, S., Costache, R.-D., Saha, A., Rezaie, F., Danesh, A., Pradhan, B., Lee, S., & Hoang, N.-D. (2021). Prediction of gully erosion susceptibility mapping using novel ensemble machine learning algorithms Perdition of gully erosion susceptibility mapping using novel ensemble machine learning algorithms. Geomatics, Natural Hazards and Risk, 469–498. https://doi.org/10.1080/19475 705.2021.1880977
- 9. Atefi, M. R., & Miura, H. (2022). Detection of flash flood inundated areas using relative difference in NDVI from Sentinel-2 Images : A case study of the August 2020 Event in Charikar, Afghanistan. Remote Sensing, 14(15), 3647. https://doi.org/10.3390/rs14153647
- 10. Avand, M., Kuriqi, A., Khazaei, M., & Ghorbanzadeh, O. (2022). DEM resolution effects on machine learning performance for flood probability mapping. Journal of Hydro-Environment Research, 40, 1 16. https://doi.org/10.1016/j.jher.2021.10.002
- 11. Barakat, A., Ennaji, W., Krimissa, S., & Bouzaid, M. (2020). Heavy metal contamination and ecological-health risk evaluation in peri-urban wastewater-irrigated soils of Beni-Mellal city (Morocco). International Journal of Environmental Health Research, 30(4), 372–387. https://doi.org/10.1080/09603123 .2019.1595540
- 12. Bechkit, M. A., Boufekane, A., Busico, G., Lama, G. F. C., Mouhoub, F. C., Aichaoui, M., Arrache, K., & Bourouis, S. (2024). Seawater intrusion mapping using geophysical methods, piezometry, and hydrochemical data analysis : Application in the Coastal Aquifer of Nador Wadi Plain in Tipaza (Algeria). Pure and Applied Geophysics. https://doi.org/10.1007/s00024-024-03565-2
- 13. Beshir, A. A., & Song, J. (2021). Urbanization and its impact on flood hazard: The case of Addis Ababa, Ethiopia. Natural Hazards, 109(1), 1167–1190. https://doi.org/10.1007/s11069-021-04873-9
- 14. Bogale, A. (2021). Morphometric analysis of a drainage basin using geographical information system in Gilgel Abay watershed, Lake Tana Basin, upper Blue Nile Basin, Ethiopia. Applied Water Science, 11(7), 122. https://doi.org/10.1007/s13201-021-01447-9
- 15. Bouramtane, T., Hilal, H., Rezende-Filho, A. T., Bouramtane, K., Barbiero, L., Abraham, S., Valles, V., Kacimi, I., Sanhaji, H., Torres-Rondon, L., De Castro, D. D., Vieira Santos, J. D. C., Ouardi, J., Beqqali, O. E., Kassou, N., & Morarech, M. (2022). Mapping gully erosion variability and susceptibility using remote sensing, multivariate statistical analysis, and machine learning in south Mato Grosso, Brazil. Geosciences, 12(6), 235. https://doi.org/10.3390/geosciences12060235
- 16. Cea, L., & Costabile, P. (2022). Flood risk in urban areas: Modelling, management and adaptation to climate change. A Review. Hydrology, 9(3), 50. https://doi.org/10.3390/hydrology9030050
- 17. Chen, Y., Liu, R., Barrett, D., Gao, L., Zhou, M., Renzullo, L., & Emelyanova, I. (2015). A spatial assessment framework for evaluating flood risk under extreme climates. Science of The Total Environment, 538, 512–523. https://doi.org/10.1016/j. scitotenv.2015.08.094
- 18. Crimaldi, M., & Lama, G. F. C. (2021). Impact of riparian plants biomass assessed by UAV-acquired multispectral images on the hydrodynamics of vegetated streams. 1157–1161. Scopus.
- 19. Eini, M., Kaboli, H. S., Rashidian, M., & Hedayat, H. (2020). Hazard and vulnerability in urban flood risk mapping : Machine learning techniques and considering the role of urban districts. International Journal of Disaster Risk Reduction, 50, 101687. https://doi.org/10.1016/j.ijdrr.2020.101687
- 20. Haghizadeh, A., Siahkamari, S., Haghiabi, A. H., & Rahmati, O. (2017). Forecasting flood-prone areas using Shannon’s entropy model. Journal of Earth System Science, 126(3), 39. https://doi.org/10.1007/ s12040-017-0819-x
- 21. Ibrahim, M., Huo, A., Ullah, W., Ullah, S., Ahmad, A., & Zhong, F. (2024). Flood vulnerability assessment in the flood prone area of Khyber Pakhtunkhwa, Pakistan. Frontiers in Environmental Science, 12. https://doi.org/10.3389/fenvs.2024.1303976
- 22. Ismaili, M., Krimissa, S., Namous, M., Boudhar, A., Edahbi, M., Lebrini, Y., Htitiou, A., Maimouni, S., & Benabdelouahab, T. (2024). Mapping soil suitability using phenological information derived from MODIS time series data in a semi-arid region : A case study of Khouribga, Morocco. Heliyon, 10, e24101. https://doi.org/10.1016/j.heliyon.2024.e24101
- 23. Ismaili, M., Krimissa, S., Namous, M., Htitiou, A., Abdelrahman, K., Fnais, M. S., Lhissou, R., Eloudi, H., Faouzi, E., & Benabdelouahab, T. (2023). Assessment of soil suitability using machine learning in arid and semi-arid regions. AGRONOMY-BASEL, 13(1). https://doi.org/10.3390/agronomy13010165
- 24. Janizadeh, S., Chandra Pal, S., Saha, A., Chowdhuri, I., Ahmadi, K., Mirzaei, S., Mosavi, A. H., & Tiefenbacher, J. P. (2021). Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future. Journal of Environmental Management, 298, 113551. https://doi.org/10.1016/j.jenvman.2021.113551
- 25. Kaffas, K., Papaioannou, G., Varlas, G., Al Sayah, M. J., Papadopoulos, A., Dimitriou, E., Katsafados, P., & Righetti, M. (2022). Forecasting soil erosion and sediment yields during flash floods : The disastrous case of Mandra, Greece, 2017. Earth Surface Processes and Landforms, 47(7), 1744–1760. https://doi.org/10.1002/esp.5344
- 26. Khan, M. S., Ullah, S., & Chen, L. (2021). Comparison on land-use/land-cover indices in explaining land surface temperature variations in the city of Beijing, China. Land, 10(10), Article 10. https://doi.org/10.3390/land10101018
- 27. Leggesse, E. S., Derseh, W. A., Zimale, F. A., Tilahun, S. A., & Meshesha, M. A. (2024). Urban flash flood hazard mapping using machine learning, Bahir Dar, Ethiopia. Journal of Hydroinformatics, 26(9), 2124–2145. https://doi.org/10.2166/hydro.2024.277
- 28. Lense, G. H. E., Lämmle, L., Ayer, J. E. B., Lama, G. F. C., Rubira, F. G., & Mincato, R. L. (2023). Modeling of Soil Loss by Water Erosion and Its Impacts on the Cantareira System, Brazil. Water, 15(8), Article 8. https://doi.org/10.3390/w15081490
- 29. Luong, T. T., Pöschmann, J., Kronenberg, R., & Bernhofer, C. (2021). Rainfall Threshold for Flash Flood Warning Based on Model Output of Soil Moisture : Case Study Wernersbach, Germany. Water, 13(8), 1061. https://doi.org/10.3390/w13081061
- 30. Mahmoud, S. H., & Gan, T. (2018). Urbanization and climate change implications in flood risk management : Developing an efficient decision support system for flood susceptibility mapping. The Science of the total environment, 636, 152–167. https://doi.org/10.1016/j.scitotenv.2018.04.282
- 31. Megahed, H. A., Abdo, A. M., AbdelRahman, M. A. E., Scopa, A., & Hegazy, M. N. (2023). Frequency ratio model as tools for flood susceptibility mapping in urbanized areas : A case study from Egypt. Applied Sciences, 13(16), 9445. https://doi.org/10.3390/app13169445
- 32. Nguyen, B. D., Minh, D. T., Ahmad, A., & Nguyen, Q. L. (2020). The role of relative slope length in flood hazard mapping using ahp and gis (Case Study : Lam River Basin, Vietnam). Geography, Environment, Sustainability, 13(2), 115–123. https://doi.org/10.24057/2071-9388-2020-48
- 33. Paul, E., Harrison, C., Satchell, L., Goff, L. L., & O’Callaghan, K. (2022). Novel approaches to healthcare-associated infection surveillance validation using Cohen’s Kappa. American Journal of Infection Control, 50(7, Supplement), S7. https://doi.org/10.1016/j.ajic.2022.03.129
- 34. Peng, J., Kim, M., & Sung, K. (2020). Yield prediction modeling for sorghum-sudangrass hybrid based on climatic, soil, and cultivar data in the Republic of Korea. Agriculture-Basel, 10(4). https://doi.org/10.3390/agriculture10040137
- 35. Pham, B. T., Jaafari, A., Prakash, I., Singh, S. K., Quoc, N. K., & Bui, D. T. (2019). Hybrid computational intelligence models for groundwater potential mapping. Catena, 182, 104101. https://doi.org/10.1016/j.catena.2019.104101
- 36. Pirone, D., Cimorelli, L., & Pianese, D. (2024). The effect of flood-mitigation reservoir configuration on peak-discharge reduction during preliminary design. Journal of Hydrology: Regional Studies, 52, 101676. https://doi.org/10.1016/j.ejrh.2024.101676
- 37. Rahman, M., Ningsheng, C., Mahmud, G. I., Islam, M. M., Pourghasemi, H. R., Ahmad, H., Habumugisha, J. M., Washakh, R. M. A., Alam, M., Liu, E., Han, Z., Ni, H., Shufeng, T., & Dewan, A. (2021). Flooding and its relationship with land cover change, population growth, and road density. Geoscience Frontiers, 12(6), 101224. https://doi.org/10.1016/j.gsf.2021.101224
- 38. Rahmati, O., Pourghasemi, H. R., & Zeinivand, H. (2016). Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto International, 31(1), 42–70. https://doi.org/10.1080/10106049.2015.1041559
- 39. Raja, N. B., Çiçek, I., Türkoğlu, N., Aydin, O., & Kawasaki, A. (2017). Landslide susceptibility mapping of the Sera River Basin using logistic regression model. Natural Hazards, 85(3), 1323–1346. https://doi.org/10.1007/s11069-016-2591-7
- 40. Ramesh, V., & Iqbal, S. S. (2022). Urban flood susceptibility zonation mapping using evidential belief function, frequency ratio and fuzzy gamma operator models in GIS : A case study of Greater Mumbai, Maharashtra, India. Geocarto International, 37(2), 581–606. https://doi.org/10.1080/10106049.2020.1730448
- 41. Ren, H., Pang, B., Bai, P., Zhao, G., Liu, S., Liu, Y., & Li, M. (2024). Flood susceptibility assessment with random sampling strategy in ensemble learning (RF and XGBoost). Remote Sensing, 16(2), Article 2. https://doi.org/10.3390/rs16020320
- 42. Salimi, M., & Al-Ghamdi, S. G. (2020). Climate change impacts on critical urban infrastructure and urban resiliency strategies for the Middle East. Sustainable Cities and Society, 54, 101948. https://doi.org/10.1016/j.scs.2019.101948
- 43. Soussa, H. (2010). Integrated Flood and Drought Management for Sustainable Development in the Nile Basin. https://www.academia.edu/70522279/ Integrated_Flood_and_Drought_Management_for_ Sustainable_Development_in_the_Nile_Basin
- 44. Talha, S., Akhssas, A., Aarab, A., Aabi, A., & Berkat, B. (2025). Enhancing flash flood risk prediction : A case study from the Assaka watershed, Guelmim region, Southwestern Morocco. Ecological Engineering & Environmental Technology, 26(1), 8–28. https://doi.org/10.12912/27197050/195227
- 45. Taromideh, F., Fazloula, R., Choubin, B., Emadi, A., & Berndtsson, R. (2022). Urban Flood-Risk Assessment : Integration of Decision-Making and Machine Learning. Sustainability, 14(8), 4483. https://doi.org/10.3390/su14084483
- 46. Tehrany, M. S., Jones, S., & Shabani, F. (2019). Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. CATENA, 175, 174 192. https://doi.org/10.1016/j.catena.2018.12.011
- 47. Winzeler, H. E., Owens, P. R., Read, Q. D., Libohova, Z., Ashworth, A., & Sauer, T. (2022). Topographic wetness index as a proxy for soil moisture in a hillslope catena : Flow Algorithms and Map Generalization. Land, 11(11), Article 11. https://doi.org/10.3390/land11112018
- 48. Wu, Y., Zhang, Z., Qi, X., Hu, W., & Si, S. (2024). Prediction of flood sensitivity based on Logistic Regression, eXtreme Gradient Boosting, and Random Forest modeling methods. Water Science & Technology, 89(10), 2605–2624. https://doi.org/10.2166/ wst.2024.146
- 49. Yalcin, A., Reis, S., Aydinoglu, A. C., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA, 85(3), 274–287. https://doi.org/10.1016/j.catena.2011.01.014
- 50. Yang, L., He, X., Shen, F., Zhou, C., Zhu, A.-X., Gao, B., Chen, Z., & Li, M. (2020). Improving prediction of soil organic carbon content in croplands using phenological parameters extracted from NDVI time series data. Soil and Tillage Research, 196, 104465. https://doi.org/10.1016/j.still.2019.104465
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab098f56-0618-428f-b59f-5ed15ca60b30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.