PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Representation learning-based unsupervised domain adaptation for classification of breast cancer histopathology images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Breast cancer has high incidence rate compared to the other cancers among women. This disease leads to die if it does not diagnosis early. Fortunately, by means of modern imaging procedure such as MRI, mammography, thermography, etc., and computer systems, it is possible to diagnose all kind of breast cancers in a short time. One type of BC images is histology images. They are obtained from the entire cut-off texture by use of digital cameras and contain invaluable information to diagnose malignant and benign lesions. Recently by requesting to use the digital workflow in surgical pathology, the diagnosis based on whole slide microscopy image analysis has attracted the attention of many researchers in medical image processing. Computer aided diagnosis (CAD) systems are developed to help pathologist make a better decision. There are some weaknesses in histology images based CAD systems in compared with radiology images based CAD systems. As these images are collected in different laboratory stages and from different samples, they have different distributions leading to mismatch of training (source) domain and test (target) domain. On the other hand, there is the great similarity between images of benign tumors with those of malignant. So if these images are analyzed undiscriminating, this leads to decrease classifier performance and recognition rate. In this research, a new representation learning-based unsupervised domain adaptation method is proposed to overcome these problems. This method attempts to distinguish benign extracted feature vectors from those of malignant ones by learning a domain invariant space as much as possible. This method achieved the average classification rate of 88.5% on BreaKHis dataset and increased 5.1% classification rate compared with basic methods and 1.25% with state-of-art methods.
Twórcy
  • Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran
autor
  • Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran
  • Department of Pathology, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
autor
  • Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran
Bibliografia
  • [1] Global Burden of Disease Cancer, Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 2017;3(April (4)):524–48.
  • [2] Yassin NIR, Omran S, El Houby EMF, Allam H. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review. Comput Struct Biotechnol J 2018;156(March):25–45.
  • [3] Spanhol FA, Oliveira LS, Petitjean C, Heutte L. A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng 2016;63(July (7)):1455–62.
  • [4] Robertson S, Azizpour H, Smith K, Hartman J. Digital image analysis in breast pathology—from image processing techniques to artificial intelligence. Transl Res 2018;194 (July):19–35.
  • [5] Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. Histopathological image analysis: a review. IEEE Rev Biomed Eng 2009;2(October):147–71.
  • [6] Veta M, Pluim JP, van Diest PJ, Viergever MA. Breast cancer histopathology image analysis: a review. IEEE Trans Biomed Eng 2014;61(November):1400–11.
  • [7] Komura D, Ishikawa S. Machine learning methods for histopathological image analysis. Comput Struct Biotechnol J 2018;16(December):34–42.
  • [8] Ehteshami Bejnordi B, Balkenhol M, Litjens G, Holland R, Bult P, Karssemeijer N, et al. Automated detection of DCIS in whole-slide H&E stained breast histopathology images. IEEE Trans Med Imaging 2016;35(September):2141–51.
  • [9] Kowal M, Filipczuk P, Obuchowicz A, Korbicz J, Monczak R. Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. IEEE Trans Med Imaging 2013;32(December (12)):2169–78.
  • [10] George YM, Zayed HH, Roushdy MI, Elbagoury BM. Remote computer-aided breast cancer detection and diagnosis system based on cytological images. IEEE Syst J 2014;8 (October):949–64.
  • [11] Filipczuk P, Fevens T, Krzyzak A, Monczak R. Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans Med Imaging 2013;32(July (12)):2169–78.
  • [12] Peikari M, Gangeh MJ, Zubovits J, Clarke G, Martel AL. Triaging diagnostically relevant regions from pathology whole slides of breast cancer: a texture based approach. IEEE Trans Med Imaging 2016;35(January (1)):307–15.
  • [13] Verma R, Kumar N, Sethi A, Gann PH. Detecting multiple sub-types of breast cancer in a single patient. IEEE Int Conf Image Process 2016;September:2648–52.
  • [14] Vu TH, Mousavi HS, Monga V, Rao G, Rao UK. Histopathological image classification using discriminative feature-oriented dictionary learning. IEEE Trans Med Imaging 2016;35(March (3)):738–51.
  • [15] Irshad H, Veillard A, Roux L, Racoceanu D. Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential. IEEE Rev Biomed Eng 2014;7(December):97–114.
  • [16] Zhang Y, Zhang B, Coenen F, Lu W. Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles. Mach Vis Appl 2013;24(October (7)):1405–20.
  • [17] Zhang Y, Zhang B, Coenen F, Xiao J, Lu W. One-class kernel subspace ensemble for medical image classification. EURASIP J Adv Signal Process 2014;2014(February (1)).
  • [18] Spanhol FA, Oliveira LS, Petitjean C, Heutte L. Breast cancer histopathological image classification using convolutional neural networks. International Joint Conference on Neural Networks (IJCNN). 2016. pp. 2560–7.
  • [19] Bayramoglu N, Kannala J, Heikkilä J. Deep learning for magnification independent breast cancer histopathology image classification. 23rd International Conference on Pattern Recognition (ICPR). 2016. pp. 2440–5.
  • [20] Song Y, Zou JJ, Chang H, Cai W. Adapting fisher vectors for histopathology image classification. IEEE 14th International Symposium on Biomedical Imaging, April. 2017. pp. 600–3.
  • [21] Song Y, Chang H, Huang H, Cai W. Supervised intraembedding of fisher vectors for histopathology image classification. Med Image Comput Comput Assisted Interv 2017;10435(September):99–106.
  • [22] Vink JP, Van Leeuwen MB, Van Deurzen CHM, De Haan G. Efficient nucleus detector in histopathology images. J Microsc 2013;249(February (2)):124–35.
  • [23] Rojo MG, Bueno G, Slodkowska J. Review of imaging solutions for integrated quantitative immunohistochemistry in the pathology daily practice. Folia Histochem Cytobiol 2009;47(3):349–54.
  • [24] Jung C, Kim C. Segmenting clustered nuclei using Hminima transform-based marker extraction and contour parameterization. IEEE Trans Biomed Eng 2010;57(October (10)):2600–4.
  • [25] Jung C, Kim C, Chae SW, Oh S. Unsupervised segmentation of overlapped nuclei using Bayesian classification. IEEE Trans Biomed Eng 2010;57(December (12)):2825–32.
  • [26] Gong B, Grauman K, Sha F. Reshaping visual datasets for domain adaptation. Proceedings of the Advances in Neural Information Processing Systems; 2013. p. 1286–94.
  • [27] Chai X, Wang Q, Zhao Y, Liu X, Bai O, Li Y. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition. Comput Biol Med 2016;79(December):205–14.
  • [28] Hou C, Tsai YH, Yeh Y, Wang YF. Unsupervised domain adaptation with label and structural consistency. IEEE Trans Image Process 2016;25(December (12)):5552–62.
  • [29] Hofer C, Kwitt R, Höller Y, Trinka E, Uhl A. Simple domain adaptation for cross-dataset analyses of brain MRI data. IEEE 14th International Symposium on Biomedical Imaging (ISBI). 2017. pp. 441–5.
  • [30] Uzair M, Mian A. Blind domain adaptation with augmented extreme learning machine features. IEEE Trans Cybern 2017;47(March (3)):651–60.
  • [31] Long M, Wang J, Ding G, Pan SJ, Yu PS. Adaptation regularization: a general framework for transfer learning. IEEE Trans Knowl Data Eng 2014;26(May (5)):1076–89.
  • [32] Ahmed A, Arnold A, Coelho LP, Kangas J, Sheikh A, Xing E, et al. Structured literature image finder: parsing text and figures in biomedical literature. Web Sem Sci Serv Agents World Wide Web 2010;8(July (2–3)):151–4.
  • [33] Hamilton NA, Pantelic RS, Hanson K, Teasdale RD. Fast automated cell phenotype image classification. BMC Bioinform 2007;8:110.
  • [34] Ojansivu V, Heikkilä J. Blur insensitive texture classification using local phase quantization. International Conference on Image and Signal Processing (ICISP). 2008. pp. 236–43.
  • [35] Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 2006;28(December (12)):2037–41.
  • [36] Paivarinta J, Rahtu E, Heikkila J. Volume local phase quantization for blur-insensitive dynamic texture classification. 17th Scandinavian Conference on Image Analysis. 2011. pp. 360–9.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab04b1bd-9535-4535-8ffe-3d1c11ac8fed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.