PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of adhesively bonded joints of aluminum sheets for application as the core of composite beams

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena adhezyjnych połączeń blach aluminiowych do aplikacji jako trzon belek kompozytowych
Języki publikacji
EN
Abstrakty
EN
The paper presents an evaluation of joints resulting from adhesively bonded aluminum sheets. The aim of the study was to assess the possibility of applying this type of connection for the construction of composite beams. The results of experimental tests on the shear test of joints are presented. Four types of connectors were the subjects of the research. The joints of the same geometry were made of four 1.6 mm thick sheets of aluminum alloy AA 7075-T6. Each type of joint was characterized by a different material joining the sheets: three of them were connected by acrylic foam tapes, one joint was made using two component toughened methacrylate adhesive. Three different double-sided acrylic foam tapes with different properties were tested. It has been assessed that the two-component toughened methacrylate adhesive can be used for the construction of the aluminum core applied in composite structures.
PL
Dokonano oceny połączeń aluminiowych blach w wyniku adhezji. Celem pracy była ocena możliwości zastosowania tego typu połączeń do budowy belek kompozytowych. Zaprezentowano wyniki badań eksperymentalnych z próby ścinania złączy. Przedmiotem badań były cztery rodzaje złączy. Złącza o identycznej geometrii zbudowano z czterech blach ze stopu aluminium AA 7075-T6 o grubości 1.6 mm. Każdy typ złącza charakteryzował się innym materiałem łączącym blachy: trzy z nich połączono za pomocą akrylowych taśm piankowych, jedno złącze powstało z wykorzystaniem dwuskładnikowego, utwardzanego metakrylowego kleju. Przebadano trzy różne dwustronnie klejące akrylowe taśmy piankowe różniące się właściwościami. Oceniono, iż do budowy konstrukcji kompozytowych opartych na bazie trzonu aluminiowego istnieje możliwość zastosowania dwuskładnikowego, utwardzanego metakrylowego kleju.
Rocznik
Strony
30--36
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Faculty of Civil Engineering, ul. Akademicka 3, 42-218 Częstochowa
Bibliografia
  • [1] Mazzolani F.M., Structural Applications of Aluminium in Civil Engineering, Structural Engineering International 2006, 16 (4), 280-285. doi:10.2749/101686606778995128.
  • [2] Matteis G. de, Landolfo R., Manganiello M., Mazzolani F. M., Inelastic behaviour of I-shaped aluminium beams: numerical analysis and cross-sectional classification, Computers & Structures 2004, 82 (23-26), 2157-2171. doi: 10.1016/j.compstruc.2004.03.071.
  • [3] Montuori R., Nastri E., Piluso V., Pisapia A., Ultimate behaviour of high-yielding low-hardening aluminium alloy I-beams, Thin-Walled Structures 2020, 146, 1-14. doi: 10.1016/j.tws.2019.106463.
  • [4] Wang Y. Q., Yuan H. X., Shi Y. J., Cheng M., Lateral-torsional buckling resistance of aluminium I-beams, Thin-Walled Structures 2012, 50(1), 24-36. doi: 10.1016/j.tws.2011.07.005.
  • [5] Yuan L., Zhang Q., Luo X., Ouyang Y., Yin J., Shear resistance of aluminum alloy extruded H-Section beams, Thin-Walled Structures 2020, 107219. doi: 10.1016/j.tws.2020.107219.
  • [6] Mazzolani F. M., Competing issues for aluminium alloys in structural engineering, Prog. Struct. Engng Mater. 2004, 6(4), 185-196. doi: 10.1002/pse.178.
  • [7] Lacki P., Więckowski W., Luty G., Wieczorek P., Motyka M., Evaluation of usefulness of AlCrN coatings for increased life of tools used in friction stir welding (FSW) of sheet aluminum alloy, Materials (Basel, Switzerland) 2020, 13(18), 1-11. doi: 10.3390/ma13184124.
  • [8] Wieckowski W., Wieczorek P., Lacki J., Investigations of anti-wear coatings in terms of their applicability to tools in the FSW process, Acta Phys. Pol. A 2019, 135(2), 177-182. doi: 10.12693/APhysPolA.135.177.
  • [9] Larsen B., Hunt J., Hovanski Y., Investigating steel tool life in the RFSSW process, Journal of Manufacturing Processes 2020, 58, 637-645. doi: 10.1016/j.jmapro.2020.07.034.
  • [10] Adamus J., Pomada M., Selected issues of choosing composite materials for window supporting beams, Journal of Building Engineering 2020, 32, 1-10. doi: 10.1016/j.jobe.2020.101542.
  • [11] Lacki P., Derlatka A., Strength evaluation of beam made of the aluminum 6061-T6 and titanium grade 5 alloys sheets joined by RFSSW and RSW, Composite Structures 2017, 159, 491-497. doi: 10.1016/j.compstruct.2016. 10.003.
  • [12] Lacki P., Derlatka A., Influence of PU foam reinforcement of I-beam on buckling resistance, Composite Structures 2018, 202, 201-209. doi: 10.1016/j.compstruct.2018.01.050.
  • [13] Lacki P., Derlatka A., Winowiecka J., Analysis of the composite I-beam reinforced with PU foam with the addition of chopped glass fiber, Composite Structures 2019, 218, 60-70. doi: 10.1016/j.compstruct.2019.03.036.
  • [14] Amatya I., Seo J., Jeong E., Lee J., Numerical study for structural performance evaluation of adhesively bonded aluminum dynamic message signs, Thin-Walled Structures 2020, 1-11. doi: 10.1016/j.tws.2020.107193.
  • [15] Ha D.-W., Jeon G.-W., Shin J.-S., Jeong C.-Y., Mechanical properties of steel-aluminum multi-materials using a structural adhesive, Materials Today Communications 2020, 25, 1-10. doi: 10.1016/j.mtcomm.2020.101552.
  • [16] You M., Yan Z.-M., Zheng X.-L., Yu H.-Z., Li Z., A numerical and experimental study of gap length on adhesively bonded aluminum double-lap joint, International Journal of Adhesion and Adhesives 2007, 27(8), 696-702. doi: 10.1016/j.ijadhadh.2007.02.005.
  • [17] Kahraman R., Sunar M., Yilbas B., Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive, Journal of Materials Processing Technology 2008, 205 (1-3), 183-189. Doi : 10.1016/j.jmatprotec.2007.11.121.
  • [18] Sadowski T., Golewski P., Zarzeka-Raczkowska E., Damage and failure processes of hybrid joints: Adhesive bonded aluminium plates reinforced by rivets, Computational Materials Science 2011, 50(4), 1256-1262. doi: 10.1016/j.commatsci.2010.06.022.
  • [19] Lunder O., Olsen B., Nisancioglu K., Pre-treatment of AA6060 aluminium alloy for adhesive bonding, International Journal of Adhesion and Adhesives 2002, 22(2), 143-150. doi: 10.1016/S0143-7496(01)00049-5.
  • [20] Correia S., Anes V., Reis L., Effect of surface treatment on adhesively bonded aluminium-aluminium joints regarding aeronautical structures, Engineering Failure Analysis 2018, 84, 34-45. doi: 10.1016/j.engfailanal. 2017.10.010.
  • [21] Shahzad M.F., Mughal M.P., Iqbal H., Mufti N.A., Saleem M.Q., Polybenzimidazole adhesive bonded aluminum2024 joints for structural applications, International Journal of Adhesion and Adhesives 2019, 95, 102433. doi: 10.1016/j.ijadhadh.2019.102433.
  • [22] Park S.Y., Choi W.J., Yoon B.C., Analysis of effects of process factors on corrosion resistance of adhesive bonded joints for aluminum alloys, Journal of Materials Processing Technology 2020, 276, 116412. doi: 10.1016/j.jmatprotec.2019.116412.
  • [23] Wang M., Liu A., Liu Z., Wang P.-C., Effect of hot humid environmental exposure on fatigue crack growth of adhesive-bonded aluminum A356 joints, International Journal of Adhesion and Adhesives 2013, 40, 1-10. doi: 10.1016/j.ijadhadh.2012.08.008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab0345c7-5fc0-4b8c-9464-c404103850f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.