PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Waveform and resistivity data fusion imaging method based on the refection coefficient

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To achieve comprehensive analyses, the presentation of comprehensive geophysical results usually involves the use of separate imaging and the combination of various results. At present, few studies have considered the correlation degree and unified imaging of different types of geophysical data. We establish a set of data fusion imaging methods for multiple geophysical data based on their refection coefficients. As geophysical exploration results are primarily provided through waveform and resistivity sections, waveform and resistivity data were selected for fusion and were converted into refection coefficients, and ground-penetrating radar (GPR) and surface electrical resistivity tomography (ERT) were taken as examples. Re-sampling and feature reconstruction were performed to unify the data in space and resolution. Finally, principal component analysis was used to calculate the correlation of the reconstructed refection coefficient and to perform data fusion; this led to unified imaging based on the refection coefficient of the considered geophysical data. Numerical simulation analyses and field experiments proved the efficacy of this method for producing unified imaging of multiple geophysical data. In summary, we provide a novel method for the unified interpretation of multiple geophysical data and enhance the identification ability of geological interfaces and anomaly distribution.
Czasopismo
Rocznik
Strony
175--192
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Geotechnical and Structural Engineering Research Center, Shandong University, Jingshi Road, Jinan 250061, Shandong, China
autor
  • Geotechnical and Structural Engineering Research Center, Shandong University, Jingshi Road, Jinan 250061, Shandong, China
autor
  • Geotechnical and Structural Engineering Research Center, Shandong University, Jingshi Road, Jinan 250061, Shandong, China
autor
  • Geotechnical and Structural Engineering Research Center, Shandong University, Jingshi Road, Jinan 250061, Shandong, China
autor
  • Geotechnical and Structural Engineering Research Center, Shandong University, Jingshi Road, Jinan 250061, Shandong, China
autor
  • Geotechnical and Structural Engineering Research Center, Shandong University, Jingshi Road, Jinan 250061, Shandong, China
Bibliografia
  • 1. Aizebeokhai AP, Olayinka AI (2011) Anomaly effects of orthogonal paired-arrays for 3D geoelectrical resistivity imaging. Environ Earth Sci 64:2141–2149. https://doi.org/10.1007/s12665-011-1041-9
  • 2. Balkaya C, Kalyoncuoglu UY, Ozhanli M, Merter G, Cakmak O, Guven IT (2018) Ground-penetrating radar and electrical resistivity tomography studies in the biblical Pisidian Antioch city, southwest Anatolia. Archaeol Prospect 25:285–300. https://doi.org/10.1002/arp.1708
  • 3. Balkaya C, Ekinci YL, Cakmak O, Blomer M, Arnkens J, Kaya MA (2021) A challenging archaeo-geophysical exploration through GPR and ERT surveys on the Keber Tepe, City Hill of Doliche, Commagene (Gaziantep, SE Turkey). J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2021.104272
  • 4. Behura J, Tsvankin I (2009) Reflection coefficients in attenuative anisotropic media. Soc Explor Geophys 74:WB193–WB202. https://doi.org/10.1190/1.3142874
  • 5. Cardarelli E, Marrone C, Orlando L (2003) Evaluation of tunnel stability using integrated geophysical methods. J Appl Geophys 52:93–102. https://doi.org/10.1016/s0926-9851(02)00242-2
  • 6. Chen P, Xin Y (2014) Principal component analysis and its application in feature extraction. Dissertation, Shanxi Normal University
  • 7. Drahor MG (2006) Integrated geophysical studies in the upper part of Sardis archaeological site, Turkey. J Appl Geophys 59:205–223. https://doi.org/10.1016/j.jappgeo.2005.10.008
  • 8. Erkan K, Jekeli C, Shum CK (2012) Fusion of gravity gradient and magnetic field data for discrimination of anomalies using deformation analysis. Geophysics 77:F13–F20. https://doi.org/10.1190/geo2010-0184.1
  • 9. Forte E, Dossi M, Pipan M, Colucci RR (2014) Velocity analysis from common offset GPR data inversion: theory and application to synthetic and real data. Geophys J Int 197:1471–1483. https://doi.org/10.1093/gji/ggu103
  • 10. Gao X, Wang Y (2002) Survey of multisensor information fusion. Comput Meas Control 10:706–709
  • 11. Grandjean G, Hibert C, Mathieu F et al (2009) Monitoring water flow in a clay-shale hillslope from geophysical data fusion based on a fuzzy logic approach. Comptes Rendus Geosci 341:937–948. https://doi.org/10.1016/j.crte.2009.08.003
  • 12. Greaves RJ, Lesmes DP, Lee JM, Toksoz MN (1996) Velocity variations and water content estimated from multi-offset, ground-penetrating radar. Geophysics 61:683–695. https://doi.org/10.1190/1.1443996
  • 13. Hernandez W, Mendez A, Ballesteros F, et al (2018) Image noise cancellation by taking advantage of the principal component analysis technique. In: 44th annual conference of the IEEE industrial-electronics-society (IECON). Washington, DC, pp 3176–3181
  • 14. Hibert C, Grandjean G, Bitri A et al (2012) Characterizing landslides through geophysical data fusion: example of the La Valette landslide (France). Eng Geol 128:23–29. https://doi.org/10.1016/j.enggeo.2011.05.001
  • 15. Hordt A, Scholl C (2004) The effect of local distortions on time-domain electromagnetic measurements. Geophysics 69:87–96
  • 16. Iqbal I, Bin X, Tian G et al (2021) Near surface velocity estimation using GPR data: investigations by numerical simulation, and experimental approach with AVO response. Remote Sens. https://doi.org/10.3390/rs13142814
  • 17. Jing R, Lin J, Xiao Z (2002) Application of K section method to karst exploration. Geol Prospect 38:78–81
  • 18. Jing R, Bao G, Lin J, Chen S (2004) A geophysical integration inversion method based on data fusion. Chinese J Geophys Ed 47:143–150
  • 19. Knight JH, Raiche AP (1982) Transient electromagnetic calculations using the gaver-stehfest inverse laplace transform method. Geophysics 47:47–50. https://doi.org/10.1190/1.1441280
  • 20. Liu T, Klotzsche A, Pondkule M et al (2018) Radius estimation of subsurface cylindrical objects from ground-penetrating-radar data using full-waveform inversion. Geophysics 83:H43–H54. https://doi.org/10.1190/geo2017-0815.1
  • 21. Loke MH, Barker RD (1995) Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60:1682–1690. https://doi.org/10.1190/1.1443900
  • 22. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152. https://doi.org/10.1111/j.1365-2478.1996.tb00142.x
  • 23. Lu Z, Cheng J (2014) Apparent resistivity joint- inversion research and application based on multi resource geophysics data fusion. Dissertation, Xi’an University of Science and Technology, China
  • 24. Mauriello P, Patella D (1999) Resistivity anomaly imaging by probability tomography. Geophys Prospect 47:411–429. https://doi.org/10.1046/j.1365-2478.1999.00137.x
  • 25. Menzel P (2016) Constrained indicator data re-sampling - a parameter constrained irregular re-sampling method for scattered point data. Geophysics 81:F17–F26. https://doi.org/10.1190/geo2015-0220.1
  • 26. Moghadas D, Andre F, Slob EC et al (2010) Joint full-waveform analysis of off-ground zero-offset ground penetrating radar and electromagnetic induction synthetic data for estimating soil electrical properties. Geophys J Int 182:1267–1278. https://doi.org/10.1111/j.1365-246X.2010.04706.x
  • 27. Moura Oliveira SA, Lupinacci WM (2013) L1 norm inversion method for deconvolution in attenuating media. Geophys Prospect 61:771–777. https://doi.org/10.1111/1365-2478.12002
  • 28. Robertsson JOA (1996) A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography. Geophysics 61:1921–1934. https://doi.org/10.1190/1.1444107
  • 29. Schultz PS (1982) A method for direct estimation of interval velocities. Geophysics 47:1657–1671. https://doi.org/10.1190/1.1441315
  • 30. Sha L (2015) The research on treatment efficiency of high-density resistivity method data. Chinese J Eng Geophys 12:338–341 ((in Chinese))
  • 31. State L, Sararu C, Cocianu C, et al (2009) New approaches in image compression and noise removal. In: 1st international conference on advances in satellite and space communications. Colmar, FRANCE, pp 96-+
  • 32. Sun J (1980) Reflection coefficient electrical exploration (K section) is shallow. Geotech Investig Surv 35–41 (in Chinese)
  • 33. Wang L, Zhou H, Liu W et al (2021) Data-driven multichannel poststack seismic impedance inversion via patch-ordering regularization. Geophysics 86:R197–R210. https://doi.org/10.1190/geo2020-0253.1
  • 34. Wu Y, Lu C, Du X, Yu X (2014) A denoising method based on principal component analysis for airborne transient electromagnetic data. Comput Tech Geophys Geochemical Explor 36:170–176
  • 35. Yilmaz S, Balkaya C, Cakmak O, Oksum E (2019) GPR and ERT explorations at the archaeological site of Kilic village (Isparta, SW Turkey). J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2019.103859
  • 36. Yilmaz O (2004) Processing, inversion, and interpretation of engineering seismic data
  • 37. Yin X, Kong Y, Zhang G (2008) Seismic attributes optimization based on kernel principal component analysis (KPCA) and application. Oil Geophys Prospect 179–183+124–125+246 (in Chinese)
  • 38. Yu H, Jiang S (2013) Research on compressive sensing-based 3d imaging method applied to GPR. Microw Opt Technol Lett 55:2896–2901. https://doi.org/10.1002/mop.28010
  • 39. Zhang L, Lei W (2019) Application effect of comprehensive geophysical prospecting method in tunnel advanced prediction. Dissertation, Chengdu Univerisity of Technology, China
  • 40. Zhou Z, Feng Y (2011) The comprehensive geophysical survey in tunnel exploration. Prog Geophys 26:724–731
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab032383-0200-4c27-b70d-e919c21c951d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.