PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mapping of morphological coastline changes based on aerial photographs and Discrete Fourier Transform, Hel Peninsula, Poland

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The coast is a dynamic zone where constantly occurring hydrodynamic and morphodynamic processes affect the shape of the shore. The paper presents a method based on spatial and spectral analysis of changes in the coastline position based on data obtained from aerial photographs interpretation and Fourier analysis, on the example of the Hel Peninsula. The Hel Peninsula is one of the most interesting accumulation forms of the Polish Baltic coast, where dynamic changes of the seashore cause the occurrence of time-varying sections of accumulation-abrasion of the coastline. For the purpose of detecting the coastline changes, historical aerial photographs from the years 1947, 1957, 1963, 1991 were used. It was assumed that the over-40-year research period, which includes the obtained series of aerial photographs, would allow for a sufficient study of the long-term shoreline changes, which allow for distinguishing the length of characteristic coastline undulations. The quasi-wave signal of the shoreline changes obtained from the aerial photographs interpretation, after using Fourier analysis, enabled an effective and precise identification of the coastline undulation. The spatial analyses, showed that the Hel Peninsula is clearly divided into a part subjected to accumulation processes and an abraded one. Furthermore, the dynamics of coastline changes was determined, showing that the abrasive processes were intensifying. Moreover, spectral Fourier analysis allowed for the precise identification of coastline undulations with dominant lengths. The obtained results of spatial and spectral analysis indicate that abrasive-accumulation sections with a length of about 0.3–4.5 km dominate on the Hel Peninsula shoreline.
Czasopismo
Rocznik
Strony
art. no. 66301
Opis fizyczny
Bibliogr. 45. poz., fot., rys., tab., wykr.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland
Bibliografia
  • 1. Anders, F., Byrnes, M., 1991. Accuracy of shoreline change rates as determined from maps and aerial photographs, Shore and Beach 59 (1), 17-26.
  • 2. Appeaning Addo, K., Walkden, M., Mills, J.P., 2008. Detection, measurement, and prediction of shoreline recession in Accra, Ghana, ISPRS J. Photogramm. 63, 543-558. https://doi.org/10.1016/j.isprsjprs.2008.04.001
  • 3. Basiński, T., Pruszak, Z., Tarnowska, M., Zeidler, R., 1993. Sea coast protection, IHE PAS, Gdańsk, 536 pp., (in Polish).
  • 4. Boak, E.H. , Turner, I.L., 2005. Shoreline definition and detection: A Review, J. Coastal. Res. 21(4), 688-703. https://doi.org/10.2112/03-0071.1
  • 5. Cohen, W.B, Kushla, J.D, Ripple, W.J, Garman, S.L., 1996. An introduction to digital methods in remote sensing of forested ecosystems: Focus on the Pacific Northwest, USA, Ecol. Envir. 20, 421-435. https://doi.org/10.1007/BF01203849
  • 6. Collier P., Inkpen R., Fontana D., 2001. The use of historical photography in environmental studies, Cybergeo: Eur. J. Geogr. 184. https://doi.org/10.4000/cybergeo.4019
  • 7. Constantino, D., Pepe, M., Dardanelli, G., Baiocchi, V., 2020. Using optical satellite and aerial imagery for automatic coastline mapping, Geographia Tech. 15(2), 171-190. https://doi.org/10.21163/GT_2020.152.17
  • 8. Cooley, J.W., Tukey, J.W., 1965. An algorithm for the machine calculation of complex Fourier series, Math. Comput. 19, 297-301.
  • 9. Cracknell, A., 1999. Remote sensing techniques in estuaries and coastal zones – an update, Int. J. Remote Sens. 19(3), 485-496. https://doi.org/10.1080/014311699213280
  • 10. Davis, J.D., Chojnacki, J.D., 2017. Two-dimensional discrete Fourier transform analysis of karst and coral reef morphologies, T GIS 21(13), 521-545. https://doi.org/10.1111/tgis.12277
  • 11. Dellepiane, S., Laurentiis, R., Giordano, F., 2004. Coastline extraction from SAR images and a method for the evaluation of the coastline precision, Pattern Recogn. Lett. 25(13), 1461-1470. https://doi.org/10.1016/j.patrec.2004.05.022
  • 12. Dolan, R., Hayden, B., Heywood, J., 1978. A new photogram-metric method for determining shoreline erosion, Coast. Eng. 2, 21-39. https://doi.org/10.1016/0378-3839(78)90003-0
  • 13. Dolan, R., Hayden, B., May, S., 1983. Erosion of the US shore-lines, [in:] Erosion of the US shorelines, Komar, P.D. (Ed.), CRC Handbook of Coastal Processes and Erosion, CRC Press, Boca Raton FL, 285-299.
  • 14. Dubrawski, R., 2000. The impact of artificial beach replenishment of sea shores on the coastal zone of the Hel Peninsula in the period 1989-1997, Sci. Publ. Dept. Maritime Institute, Gdańsk-Szczecin, 23-29, (in Polish).
  • 15. Dudgeon, D.E., Mersereau, R.M., 1983. Multidimensional Digital Signal Processing, Prentice-Hall Signal Processing Ser., Prentice Hall, Englewood Cliffs, 406 pp.
  • 16. Ferreira, O., Garcia,T., Matias, A., Taborda, R., Dias, J.A., 2006. An integrated method for the determination of set-back lines for coastal erosion hazards on sandy shores, Cont. Shelf. Res. 26, 1030-1044. https://doi.org/10.1016/j.csr.2005.12.016
  • 17. Furmańczyk, K., 1994. Contemporary development of the coastal zone of the tidal sea in the light of remote sensing research on the Baltic coast, Szczecin Univ. Press, Szczecin, 147 pp., (in Polish).
  • 18. Furmańczyk, K., Musielak, S., 1993. Analysis of changes and forecast of threats to the Hel Peninsula in the light ofremote sensing research, Inżynieria Morska i Geotechnika 1/1993, 351-362, (in Polish).
  • 19. Gehrmann, A., Harding, Ch., 2018. Geomorphological Mapping and Spatial Analyses of an Upper Weichselian Glacitectonic Complex Based on LiDAR Data, Jasmund Peninsula (NE Rügen), Germany, Geosciences 8(208), 2-24. https://doi.org/10.3390/geosciences8060208
  • 20. Hughes, M.L., McDowell, P.F., Marcus, W.A., 2006. Accuracy assessment of georectified aerial photographs: Implications for measuring lateral channel movement in a GIS, Geomorphology 74, 1-16. https://doi.org/10.1016/j.geomorph.2005.07.001
  • 21. Idier, D., Falques. A., 2014. How kilometric sandy shoreline undulations correlate with wave and morphology characteristics: Preliminary analysis on the Atlantic coast of Africa, Advances in Geosciences 39, 55-60. https://doi.org/10.5194/adgeo-39-55-2014
  • 22. Jensen, J., 2000. Remote sensing of the environment: An Earth resource perspective, Prentice-Hall, 592 pp.
  • 23. Kaczmarek, L., Ostrowski, R., Skaja, M., Szmytkiewicz, M., 1998. Mathematical modeling of seashore changes at the base of the Hel Peninsula, taking into account artificial replenishment, Inżynieria Morska i Geotechnika 1/1998, 13-25, (in Polish).
  • 24. Khairulbahri, M., 2022. The qualitative analysis of the nexus dynamics in the Pekalongan coastal area, Indonesia, Sci. Rep. 12, 11391. https://doi.org/10.1038/s41598-022-15683-9
  • 25. Królikowski, L., Strzelecki, W., 1969. Characteristics of the sands of coastal dunes, Sylwian 12, 21-29, (in Polish).
  • 26. Larson, M., Capobianco, M., Jansen, H., Rózyński, G., Southgate, H.N., Stive, M., Wijnberg, K.M., Hulscher, S., 2003. Analysis and modeling of field data on coastal morphological evolution over yearly and decadal time scales. Part 1: background and linear techniques, J. Coastal. Res. 19(4), 760-775.
  • 27. List, J., Farris, A., 1999. Large-scale shoreline response to storms and fair weather, Proc. Coastal Sediments 99, Long Island, New York, 1324-1337.
  • 28. Liu, H., Jezek, C., 2004. Automated Extraction of Coastline from Satellite Imagery by Integrating Canny Edge Detection and Locally Adaptive Thresholding Methods, Int. J. Remote Sens. 25, 937-958. https://doi.org/10.1080/0143116031000139890
  • 29. Moore, L.J., 2000. Shoreline mapping techniques, J. Coastal Res., 16(1), 111-124.
  • 30. Morgan, E.L., Gergel, S., Coops, N., 2010. Aerial photography: A rapidly evolving tool for ecological management, Bioscience 60(1), 47-59. https://doi.org/10.1525/bio.2010.60.1.9
  • 31. Overton, M., Fisher, J., 1996. Shoreline analysis using digital photogrammetry, Proc. 25th Int. Conf. Coastal Eng. (Orlando, Florida), 3750-3761.
  • 32. Paine, D., Kiser J., 2012. Aerial Photography and Image Interpretation, John Wiley & Sons, 648 pp.
  • 33. Pelczar, M., Nejczew, P., Mielczarski, A., 1990. Cartometric analysis of the shore-line changes on the eastern part of the Polish Baltic coast in the last century, Rozprawy Hydrotechniczne, vol. 51, 69-113, (in Polish).
  • 34. Prošek, A., Leskovar, M., 2015. Use of fast Fourier transform for sensitivity analysis, [in:] Fourier Transform – Signal Processing and Physical Sciences, Salih, S.M. (Ed.), In-Tech Open, London, 227 pp. https://doi.org/10.5772/59769
  • 35. Rayner, J.N., 1972. The application of harmonic and spectral analysis to the study of terrain, [in:] Spatial Analysis in Geomorphology, Chorley, R.J. (Ed.), Methuen, London, UK, 283-302.
  • 36. Ricard, Y., Froidevaux, C., Simpson, R., 1987. Spectral analysis of topography and gravity in the Basin and Range Province, Tectonophysics 133, 175-187.
  • 37. Shoshany, M., Degani, A., 1992. Shoreline detection by digital image processing of aerial photography, J. Coastal Res. 8(1), 29-34.
  • 38. Stachurska, B., 2012. Analysis of changes in the position of the Hel Peninsula coastline based on aerial photographs from 1947-1991, Inżynieria Morska i Geotechnika 33 (4), 541-542, (in Polish).
  • 39. Spagnolo, M., Bartholomaus, T.C., Clark, C.D., Stokes, C.R., Atkinson, N., Dowdeswell, J.A., Ely, J.C., Graham, A.G.C., Hogan, K.A., King, E.C., Larter R.D., Livingstone S.J., Pritchard H.D., 2017. The periodic topography of ice stream beds: Insights from the Fourier spectra of megascale glacial lineations, J. Geophys. Res.-Earth 122, 1355-1373. https://doi.org/10.1002/2016JF004154
  • 40. Tomczak, A., 1995. Geological structure and evolution of the Polish coastal zone, J. Coastal Res. 22, 15-31.
  • 41. Tuominen, S., Pekkarinen, A., 2004. Local radiometric correction of digital aerial photographs for multisource forest inventory, Remote Sens. Environ. 89, 72-82. https://doi.org/10.1016/j.rse.2003.10.005
  • 42. Urbański, J., 2001. Cartographic modeling of the coastal zone of the sea, Gdańsk University Press, Gdańsk, (in Polish).
  • 43. Uścinowicz, Sz., Kramarska, R., Kaulbarsz, D., Jurys, L., Frydel, J., Przezdziecki, P., Jedliński, W., 2014. Baltic Sea coastal erosion; a case study from the Jastrzębia Góra region, Geologos 20(4), 259-268. https://doi.org/10.2478/logos-2014-0018
  • 44. Yang, J., Seo, D., Lim, H., Choi, Ch., 2010. An analysis of coastal topography and land cover changes at Haeundae Beach, South Korea, Acta Astronaut. 67, 1280-1288. https://doi.org/10.1016/j.actaastro.2010.06.013
  • 45. Zawadzka-Kahlau, E., 1999. Development tendencies of the Polish shores of the South Baltic Sea, Gdańsk Science Association, Gdańsk, 147 pp., (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab0291bc-f3cb-43b7-826f-a9696b760bcc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.