PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review on the deformation mechanism and formability enhancement strategies in incremental sheet forming

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The process formability of incremental sheet forming (ISF) is better than the conventional forming processes. Stretching, through-thickness-shear, bending-under-tension (BUT), and compressive forces are the proposed deformation mechanisms for improved formability; however, researchers have not corroborated (on consensus) the relative significance of any one among these. Similarly, researchers observed abrupt fractures (brittle fracture) and fractures preceded by necking (ductile fracture) for different case studies, which initiated a new debate and is still unanswered. Besides, researchers have extended the ISF to energy-assisted ISF to improve the process formability further for materials having a high strength-to-weight ratio. Three prominent energy-assisted ISF are (a) Electric-assisted ISF (E-ISF) works on the principle of lowering the yield stress by raising the temperature and has shown promise for Magnesium and Titanium alloy. (b) The ultrasonic vibration-assisted (UV-ISF) process works on the principle of acoustoplastic softening effect and thus far improved the room temperature material formability while reducing the forming forces. (c) Electromagnetic-assisted ISF (EM-ISF) is a non-contact, high-speed process that utilizes the pulsed magnetic field to apply inertial force, which improves formability by dislocation slips. The EM-ISF and UV-ISF have shown promise to counter the challenges during aluminum alloy forming; however, the work in this regard is still in the initial phase and has not explored its full potential. This study updates the potential research on the current status of the energy-assisted ISF. Different customized testing equipment is discussed that help understand the process mechanism. Microstructural changes in the material occur at normal ISF and with energy-assisted ISF are discussed in detail. Discussion and future work are presented based on the insight from various articles at the end.
Rocznik
Strony
art. no. e55, 2023
Opis fizyczny
Bibliogr. 155 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
autor
  • Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, No.17923, Jingshi Rd, Jinan 250061, China
autor
  • School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
autor
  • School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
autor
  • School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
Bibliografia
  • 1. Yang DY, Bambach M, Cao J, Duflou JR, Groche P, Kuboki T, Sterzing A, Tekkaya AE, Lee CW. Flexibility in metal forming. CIRP Ann. 2018;67:743-65. https://doi.org/10.1016/j.cirp.2018.05.004.
  • 2. Leszak E. Apparatus and process for incremental dieless forming, 1967. http://www.google.com/patents/US3549577.
  • 3. Ghafoor S, Li Y, Zhao G, Li J, Ullah I, Li F. Deformation characteristics and formability enhancement during ultrasonic-assisted multi-stage incremental sheet forming. J Mater Res Technol. 2022;18:1038-54. https://doi.org/10.1016/j.jmrt.2022.03.036.
  • 4. Wu R, Liu X, Li M, Chen J. Investigations on deformation mechanism of double-sided incremental sheet forming with synchronous thermomechanical steel-aluminum alloy bonding. J Mater Process Technol. 2021;294: 117147. https://doi.org/10.1016/j.jmatprotec.2021.117147.
  • 5. Valoppi B, Sanchez Egea AJ, Zhang Z, Gonzalez Rojas HA, Ghiotti A, Bruschi S, Cao J. A hybrid mixed double-sided incremental forming method for forming Ti6Al4V alloy. CIRP Ann Manuf Technol. 2016;65:309-12. https://doi.org/10.1016/j.cirp.2016.04.135.
  • 6. Xu DK, Lu B, Cao TT, Zhang H, Chen J, Long H, Cao J. Enhancement of process capabilities in electrically-assisted double sided incremental forming. Mater Des. 2016;92:268-80. https://doi.org/10.1016/j.matdes.2015.12. 009.
  • 7. Jackson K, Allwood J. The mechanics of incremental sheet-forming. J Mater Process Technol. 2009;209:1158-74. https://doi.org/10.1016/j.jmatprotec.2008.03.025.
  • 8. Davarpanah MA, Zhang Z, Bansal S, Cao J, Malhotra R. Preliminary investigations on double sided incremental forming of thermoplastics. Manuf Lett. 2016;8:21-6. https://doi.org/10.1016/j.mfglet.2016.05.003.
  • 9. Gatea S, Tawfiq TAS, Ou H. Numerical and experimental investigation of formability in incremental sheet forming of particle-reinforced metal matrix composite sheets. Int J Adv Manuf Technol. 2022;120:1889-900. https://doi.org/10.1007/s00170-022-08881-2.
  • 10. Ben Said L. The incremental sheet forming; technology, modeling and formability: a brief review. J Process Mech Eng. 2022. https://doi.org/10.1177/09544089221093306.
  • 11. Emmens WC, Sebastiani G, van den Boogaard AH. The technology of Incremental Sheet Forming-a brief review of the history. J Mater Process Technol. 2010;210:981-97. https://doi.org/10.1016/j.jmatprotec.2010.02.014.
  • 12. Ullah S, Li X, Li D. Fast simulation of incremental sheet metal forming by multi-tooling. J Manuf Process. 2022;84:669-80. https://doi.org/10.1016/j.jmapro.2022.10.025.
  • 13. Wang Y, Wu W, Huang Y, Reddy NV, Cao J. Experimental and numerical analysis of double sided incremental forming. Proc ASME Int Manuf Sci Eng Conf. 2009;1:613-8. https://doi.org/10.1115/MSEC2009-84275.
  • 14. Duflou JR, Habraken AM, Cao J, Malhotra R, Bambach M, Adams D, Vanhove H, Mohammadi A, Jeswiet J. Single point incremental forming: state-of-the-art and prospects. Int J Mater Form. 2018;11:743-73. https://doi.org/10.1007/s12289-017-1387-y.
  • 15. Ullah S, Xu P, Li X, Li Y, Han K, Li D. A review on part geometric precision improvement strategies in double-sided incremental forming. Metals (Basel). 2022. https://doi.org/10.3390/met12010103.
  • 16. Emmens WC, van den Boogaard AH. An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Technol. 2009;209:3688-95. https://doi.org/10.1016/j.jmatprotec.2008.10.003.
  • 17. Behera AK, de Sousa RA, Ingarao G, Oleksik V. Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015. J Manuf Process. 2017;27:37-62. https://doi.org/10.1016/j.jmapro.2017.03.014.
  • 18. Gatea S, Ou H, Mccartney G. Review on the influence of process parameters in incremental sheet forming. Int J Adv Manuf Technol. 2016;87:479-99. https://doi.org/10.1007/s00170-016-8426-6.
  • 19. Li Y, Chen X, Liu Z, Sun J, Li F, Li J, Zhao G. A review on the recent development of incremental sheet-forming process. Int J Adv Manuf Technol. 2017;92:2439-62. https://doi.org/10.1007/s00170-017-0251-z.
  • 20. Lu H, Liu H, Wang C. Review on strategies for geometric accuracy improvement in incremental sheet forming. Int J Adv Manuf Technol. 2019;102:3381-417. https://doi.org/10.1007/s00170-019-03348-3.
  • 21. Peng W, Ou H, Becker A. Double-sided incremental forming: a review. J Manuf Sci Eng Trans ASME. 2019;141:1-12. https://doi.org/10.1115/1.4043173.
  • 22. Ma L, Wang Z. The effects of through-thickness shear stress on the formability of sheet metal-a review. J Manuf Process. 2021;71:269-89. https://doi.org/10.1016/j.jmapro.2021.09.019.
  • 23. Ai S, Long H. A review on material fracture mechanism in incremental sheet forming. Int J Adv Manuf Technol. 2019;104:33-61. https://doi.org/10.1007/s00170-019-03682-6.
  • 24. Martins PAF, Bay N, Skjoedt M, Silva MB. Theory of single point incremental forming. CIRP Ann-Manuf Technol. 2008;57:247-52. https://doi.org/10.1016/j.cirp.2008.03.047.
  • 25. Shim MS, Park JJ. The formability of aluminum sheet in incremental forming. J Mater Process Technol. 2001. https://doi.org/10.1016/S0924-0136(01)00679-3.
  • 26. Fratini L, Ambrogio G, Di Lorenzo R, Filice L, Micari F. Influence of mechanical properties of the sheet material on formability in single point incremental forming. CIRP Ann Manuf Technol. 2004;53:207-10. https://doi.org/10.1016/S0007-8506(07)60680-5.
  • 27. Maqbool M, Bambach F. Dominant deformation mechanisms in single point incremental forming (SPIF) and their effect on geometrical accuracy. Int J Mech Sci. 2018;279:279-92.
  • 28. Filice L, Fratini L, Micari F. Analysis of material formability in incremental forming. CIRP Ann Manuf Technol. 2002;51:199-202. https://doi.org/10.1016/S0007-8506(07)61499-1.
  • 29. M. Bambach, G. Hirt, S. Junk, Modelling and experimental evaluation of the incremental CNC sheet metal forming process, in: Proc. VII-Th Int. Conf. Comput. Plast., Barcelona, Spain, 2003: pp. 1-15.
  • 30. Eyckens P, Aerens R, Van Bael A, Duflou J, Van Houtte P. Smallscale finite element modelling of the plastic deformation zone in the incremental forming process. Int J Mater Form. 2008;1:185-8. https://doi.org/10.1007/s12289-008-0.
  • 31. Sawada T, Fukuhara G. Deformation mechanism of sheet metal in stretch forming with computer numerical control machine tools. J JSTP. 2001;42:1067-9.
  • 32. Emmens WC, van den Boogaard AH. Incremental forming by continuous bending under tension-an experimental investigation. J Mater Process Technol. 2009;209:5456-63. https://doi.org/10.1016/j.jmatprotec.2009.04.023.
  • 33. Young D, Jeswiet J. Wall thickness variations in single-point incremental forming. Proc Inst Mech Eng Part B J Eng Manuf. 2004;218:1453-9. https://doi.org/10.1243/0954405042418400.
  • 34. Allwood JM, Shouler DR. Generalised forming limit diagrams showing increased forming limits with non-planar stress states. Int J Plast. 2009;25:1207-30. https://doi.org/10.1016/j.ijplas.2008.11.001.
  • 35. Eyckens P, Van Bael A, Van Houtte P. Marciniak-Kuczynski type modelling of the effect of Through-Thickness Shear on the forming limits of sheet metal. Int J Plast. 2009;25:2249-68. https://doi.org/10.1016/j.ijplas.2009.02.002.
  • 36. Nasiri SMM, Basti A, Hashemi R, Darvizeh A. Effects of normal and through-thickness shear stresses on the forming limit curves of AA3104-H19 using advanced yield criteria. Int J Mech Sci. 2018;137:15-23. https://doi.org/10.1016/j.ijmecsci.2018.01.009.
  • 37. Jackson KP, Allwood JM, Landert M. Incremental forming of sandwich panels. J Mater Process Technol. 2008;204:290-303. https://doi.org/10.1016/j.jmatprotec.2007.11.117.
  • 38. Smith J, Malhotra R, Liu WK, Cao J. Deformation mechanics in single-point and accumulative double-sided incremental forming. Int J Adv Manuf Technol. 2013;69:1185-201. https://doi.org/10.1007/s00170-013-5053-3.
  • 39. Shrivastava P, Tandon P. Microstructure and texture based analysis of forming behavior and deformation mechanism of AA1050 sheet during Single Point Incremental Forming. J Mater Process Technol. 2019;266:292-310. https://doi.org/10.1016/j.jmatprotec.2018.11.012.
  • 40. Chang Z, Chen J. Analytical modeling of fracture strain and experimental validation in incremental sheet forming. J Mater Process Technol. 2021;294: 117118. https://doi.org/10.1016/j.jmatprotec.2021.117118.
  • 41. Silva MB, Skjoedt M, Martins PAF, Bay N. Revisiting the fundamentals of single point incremental forming by means of membrane analysis. Int J Mach Tools Manuf. 2008;48:73-83. https://doi.org/10.1016/j.ijmachtools.2007.07.004.
  • 42. Basak S, Prasad KS, Sidpara AM, Panda SK. Single point incremental forming of AA6061 thin sheet: calibration of ductile fracture models incorporating anisotropy and post forming analyses. Int J Mater Form. 2019;12:623-42. https://doi.org/10.1007/s12289-018-1439-y.
  • 43. Silva MB, Martins PAF. Two-point incremental forming with partial die: theory and experimentation. J Mater Eng Perform. 2013;22:1018-27. https://doi.org/10.1007/s11665-012-0400-3.
  • 44. Meier H, Magnus C, Smukala V. Impact of superimposed pressure on dieless incremental sheet metal forming with two moving tools. CIRP Ann Manuf Technol. 2011;60:327-30. https://doi.org/10.1016/j.cirp.2011.03.134.
  • 45. Lu B, Fang Y, Xu DK, Chen J, Ai S, Long H, Ou H, Cao J. Investigation of material deformation mechanism in double side incremental sheet forming. Int J Mach Tools Manuf. 2015;93:37-48. https://doi.org/10.1016/j.ijmachtools.2015.03.007.
  • 46. Malhotra R, Cao J, Ren F, Kiridena V, Cedric Xia Z, Reddy NV. Improvement of geometric accuracy in incremental forming by using a squeezing toolpath strategy with two forming tools. J Manuf Sci Eng Trans ASME. 2011;133:1-10. https://doi.org/10.1115/1.4005179.
  • 47. Wang Y, Huang Y, Cao J, Reddy NV. Experimental study on a new method of double side incremental forming. Proc ASME Int Manuf Sci Eng Conf. 2009;1:601-7. https://doi.org/10.1115/MSEC_ICMP2008-72279.
  • 48. Malhotra R, Cao J, Beltran M, Xu D, Magargee J, Kiridena V, Xia ZC. Accumulative-DSIF strategy for enhancing process capabilities in incremental forming. CIRP Ann Manuf Technol. 2012;61:251-4. https://doi.org/10.1016/j.cirp.2012.03.093.
  • 49. Xu R, Ren H, Zhang Z, Malhotra R, Cao J. A mixed toolpath strategy for improved geometric accuracy and higher through-put in double-sided incremental forming, In: ASME 2014 Int. Manuf. Sci. Eng. Conf. MSEC 2014 Collocated with JSME 2014 Int. Conf. Mater. Process. 42nd North Am. Manuf. Res. Conf., 2014: pp. 1-8. https://doi.org/10.1115/MSEC2014-4127.
  • 50. Zhang Z, Ren H, Xu R, Moser N, Smith J, Ndip-Agbor E, Malhotra R, Xia ZC, Ehmann KF, Cao J. A mixed double-sided incremental forming toolpath strategy for improved geometric accuracy. J Manuf Sci Eng Trans ASME. 2015;137:1-7. https://doi.org/10.1115/1.4031092.
  • 51. Zhang H, Zhang Z, Ren H, Cao J, Chen J. Deformation mechanics and failure mode in stretch and shrink flanging by double-sided incremental forming. Int J Mech Sci. 2018;144:216-22. https://doi.org/10.1016/j.ijmecsci.2018.06.002.
  • 52. Moser N, Zhang Z, Ren H, Ehmann K, Cao J. An investigation into the mechanics of double-sided incremental forming using finite element methods. AIP Conf Proc. 2016. https://doi.org/10.1063/1.4963474.
  • 53. Ullah S, Li X, Xu P, Li Y, Han K, Li D. A toolpath strategy for improving geometric accuracy in double-sided incremental sheet forming. Chinese J Aeronaut. 2021. https://doi.org/10.1016/j.cja.2021.12.002.
  • 54. Zahid M, Xiong J, Li J, Siddique F, Jie L, Aamir M, Sadiq I, Guo W, Faisal M. Structural characterization of a composite joint prepared during laser welding of Ti - 22Al - 27Nb intermetallic alloy with an interlayer of Cu-Hf-Ni-Ti-Zr high entropy bulk metallic glass. Compos Part B. 2022;243: 110167. https://doi.org/10.1016/j.compositesb.2022.110167.
  • 55. Simoes FJP, Alves de Sousa RJ, Gracio JJA, Barlat F, Yoon JW. Mechanical behavior of an asymmetrically rolled and annealed 1050-O sheet. Int J Mech Sci. 2008;50:1372-80. https://doi.org/10.1016/j.ijmecsci.2008.07.009.
  • 56. Emmens WC, van der Weijde DH, van den Boogaard AH (2009) The FLC, enhanced formability, and incremental sheet forming. In: IDDRG 09 Conference of Proceeding, Golden Colorado, USA. 2009, p. 773-84. http://purl.org/utwente/69291.
  • 57. Benedyk JC, Parikh NM, Stawarz D. A method for increasing elongation values for ferrous and nonferrous sheet metals (Ferrous and nonferrous sheet metals neck formation prevention for increasing elongation in tensile tests, using continuous plastic bending method). J Mater. 1971;6:16-29.
  • 58. Iseki H. An approximate deformation analysis and FEM analysis for the incremental bulging of sheet metal using a spherical roller. J Mater Process Technol. 2001;111:150-4. https://doi.org/10.1016/S0924-0136(01)00500-3.
  • 59. Haque MZ, Yoon JW. Stress based prediction of formability and failure in incremental sheet forming. Int J Mater Form. 2016;9:413-21. https://doi.org/10.1007/s12289-015-1237-8.
  • 60. Silva MP, Skjodt M, Bay N. Revisiting singlepoint incremental forming and formability/failure diagrams by means of finite elements and experimentation. J Strain Anal Eng Des. 2009;44:221-34. https://doi.org/10.1038/132817a0.
  • 61. Hussain G, Gao L, Hayat N, Ziran X. A new formability indicator in single point incremental forming. J Mater Process Technol. 2009;209:4237-42. https://doi.org/10.1016/j.jmatprotec.2008.11.024.
  • 62. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J. Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol. 2005;54:88-114. https://doi.org/10.1016/s0007-8506(07)60021-3.
  • 63. Ai S, Lu B, Chen J, Long H, Ou H. Evaluation of deformation stability and fracture mechanism in incremental sheet forming. Int J Mech Sci. 2017;124-125:174-84. https://doi.org/10.1016/j.ijmecsci.2017.03.012.
  • 64. Kim YH, Park JJ. Effect of process parameters on formability in incremental forming of sheet metal. J Mater Process Technol. 2002;130:42-6. https://doi.org/10.1016/S0924-0136(02)00788-4.
  • 65. Hussain G, Gao L, Zhang ZY. Formability evaluation of a pure titanium sheet in the cold incremental formingprocess. Int J Adv Manuf Technol. 2008;37:920-6. https://doi.org/10.1007/s00170-007-1043-7.
  • 66. Xu D, Wu W, Malhotra R, Chen J, Lu B, Cao J. Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. Int J Mach Tools Manuf. 2013;73:37-46. https://doi.org/10.1016/j.ijmachtools.2013.06.007.
  • 67. Buffa G, Campanella D, Fratini L. On the improvement of material formability in SPIF operation through tool stirring action. Int J Adv Manuf Technol. 2013;66:1343-51. https://doi.org/10.1007/s00170-012-4412-9.
  • 68. Grun PA, Uheida EH, Lachmann L, Dimitrov D, Oosthuizen GA. Formability of titanium alloy sheets by friction stir incremental forming. Int J Adv Manuf Technol. 2018;99:1993-2003. https://doi.org/10.1007/s00170-018-2541-5.
  • 69. Lu B, Fang Y, Xu DK, Chen J, Ou H, Moser NH, Cao J. Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. Int J Mach Tools Manuf. 2014;85:14-29. https://doi.org/10.1016/j.ijmachtools.2014.04. 007.
  • 70. Mirnia MJ, Shamsari M. Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. J Mater Process Technol. 2017;244:17-43. https://doi.org/10.1016/j.jmatprotec.2017.01.029.
  • 71. Guzman CF, Yuan S, Duchene L, Saavedra Flores EI, Habraken AM. Damage prediction in single point incremental forming using an extended Gurson model. Int J Solids Struct. 2018;151:45-56. https://doi.org/10.1016/j.ijsolstr.2017.04.013.
  • 72. Fang Y, Lu B, Chen J, Xu DK, Ou H. Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming. J Mater Process Technol. 2014;214:1503-15. https://doi.org/10.1016/j.jmatprotec.2014.02.019.
  • 73. Hussain G, Gao L, Hayat N, Qijian L. The effect of variation in the curvature of part on the formability in incremental forming: an experimental investigation. Int J Mach Tools Manuf. 2007;47:2177-81. https://doi.org/10.1016/j.ijmachtools.2007.05.001.
  • 74. Silva MP, Skjodt M, Atkins A, Bay N. Singlepoint incremental forming and formability-failure diagrams. J Strain Anal Eng Des. 2008;43:15-35. http://www.ainfo.inia.uy/digital/bitstream/item/7130/1/LUZARDO-BUIATRIA-2017.pdf.
  • 75. Malhotra R, Xue L, Belytschko T, Cao J. Mechanics of fracture in single point incremental forming. J Mater Process Technol. 2012;212:1573-90. https://doi.org/10.1016/j.jmatprotec.2012.02.021.
  • 76. Bambach M, Todorova M, Hirt G. Experimental and numerical analysis of forming limits in CNC incremental sheet forming. Key Eng Mater. 2007. https://doi.org/10.4028/0-87849-437-5.511.
  • 77. Ullah S, Li X, Xu P, Li D. Experimental and numerical investigation for sheet thickness thinning in two-point incremental forming (TPIF). Int J Adv Manuf Technol. 2022;5:2-6. https://doi.org/10.1007/s00170-022-09975-7.
  • 78. Centeno G, Bagudanch I, Martinez-Donaire AJ, Garcia-Romeu ML, Vallellano C. Critical analysis of necking and fracture limit strains and forming forces in single-point incremental forming. Mater Des. 2014;63:20-9. https://doi.org/10.1016/j.matdes.2014.05.066.
  • 79. Silva MP, Nielsen PS, Bay N. Failure mechanisms in singlepoint incremental forming of metals, Int J Adv Manuf Technol. 2011;56:893-903. http://ridum.umanizales.edu.co:8080/jspui/bitst ream/6789/377/4/Munoz_Zapata_Adriana_Patri cia_Articulo_2011.pdf.
  • 80. Gupta P, Jeswiet J. Observations on heat generated in single point incremental forming. Procedia Eng. 2017;183:161-7. https://doi.org/10.1016/j.proeng.2017.04.060.
  • 81. Emmens WC, van den Boogaard AH. Extended tensile testing with simultaneous bending, IDDRG 08 Conf. Proc. (2008) 219-29.
  • 82. Allwood JM, Shouler DR. Design, analysis and application of a novel test for sheet metal forming limits under non-planar stress states. AIP Conf Proc. 2011;1353:1595-600. https://doi.org/10.1063/1.3589744.
  • 83. Ai S, Dai R, Long H. Investigating formability enhancement in double side incremental forming by developing a new test method of tension under cyclic bending and compression. J Mater Process Technol. 2020;275: 116349. https://doi.org/10.1016/j.jmatprotec.2019.116349.
  • 84. Ji YH, Park JJ. Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. J Mater Process Technol. 2008;201:354-8. https://doi.org/10.1016/j.jmatprotec.2007.11.206.
  • 85. Ambrogio G, Filice L, Manco GL. Warm incremental forming of magnesium alloy AZ31. CIRP Ann Manuf Technol. 2008;57:257-60. https://doi.org/10.1016/j.cirp.2008.03.066.
  • 86. Duflou JR, Callebaut B, Verbert J, De Baerdemaeker H. Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann Manuf Technol. 2007;56:273-6. https://doi.org/10.1016/j.cirp.2007.05.063.
  • 87. Gottmann A, Bailly D, Bergweiler G, Bambach M, Stollenwerk J, Hirt G, Loosen P. A novel approach for temperature control in ISF supported by laser and resistance heating. Int J Adv Manuf Technol. 2013;67:2195-205. https://doi.org/10.1007/s00170-012-4640-z.
  • 88. Otsu M, Yasunaga M, Matsuda M, Takashima K. Friction stir incremental forming of A2017 aluminum sheets. Procedia Eng. 2014;81:2318-23. https://doi.org/10.1016/j.proeng.2014.10.327.
  • 89. Xu D, Lu B, Cao T, Chen J, Long H, Cao J. A comparative study on process potentials for frictional stir- and electric hot-assisted incremental sheet forming. Procedia Eng. 2014. https://doi.org/10.1016/j.proeng.2014.10.328.
  • 90. Fan G, Gao L, Hussain G, Wu Z. Electric hot incremental forming: a novel technique. Int J Mach Tools Manuf. 2008;48:1688-92. https://doi.org/10.1016/j.ijmachtools.2008.07.010.
  • 91. Ambrogio G, Filice L, Gagliardi F. Formability of light-weight alloys by hot incremental sheet forming. Mater Des. 2012;34:501-8. https://doi.org/10.1016/j.matdes.2011.08.024.
  • 92. Bao W, Chu X, Lin S, Gao J. Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming. Mater Des. 2015;87:632-9. https://doi.org/10.1016/j.matdes.2015.08.072.
  • 93. Zhang H, Chu X, Lin S, Bai H, Sun J. Temperature influence on formability and microstructure of az31b during electric hot temperature-controlled incremental forming. Materials (Basel). 2021;14:1-12. https://doi.org/10.3390/ma14040810.
  • 94. Fan G, Sun F, Meng X, Gao L, Tong G. Electric hot incremental forming of Ti-6Al-4V titanium sheet. Int J Adv Manuf Technol. 2010;49:941-7. https://doi.org/10.1007/s00170-009-2472-2.
  • 95. Li X, Zhou Q, Zhao S, Chen J. Effect of pulse current on bending behavior of Ti6Al4V alloy. Procedia Eng. 2014;81:1799-804. https://doi.org/10.1016/j.proeng.2014.10.235.
  • 96. Honarpisheh M, Abdolhoseini MJ, Amini S. Experimental and numerical investigation of the hot incremental forming of Ti-6Al-4V sheet using electrical current. Int J Adv Manuf Technol. 2016;83:2027-37. https://doi.org/10.1007/s00170-015-7717-7.
  • 97. Valoppi B, Zhang Z, Deng M, Ghiotti A, Bruschi S, Ehmann KF, Cao J. On the fracture characterization in double-sided incremental forming of Ti6Al4V sheets at elevated temperatures. Procedia Manuf. 2017;10:407-16. https://doi.org/10.1016/j.promfg.2017.07.014.
  • 98. Vahdani M, Mirnia MJ, Bakhshi-Jooybari M, Gorji H. Electric hot incremental sheet forming of Ti-6Al-4V titanium, AA6061 aluminum, and DC01 steel sheets. Int J Adv Manuf Technol. 2019;103:1199-209. https://doi.org/10.1007/s00170-019-03624-2.
  • 99. Li Z, He S, Zhang Y, Gao Z, An Z, Lu S. A novel current-carrying lubrication in electric hot incremental forming of Ti-6Al-4V titanium sheet. J Brazilian Soc Mech Sci Eng. 2022;44:1-10. https://doi.org/10.1007/s40430-022-03485-z.
  • 100. Adams D, Jeswiet J. Single-point incremental forming of 6061-T6 using electrically assisted forming methods. Proc Inst Mech Eng Part B J Eng Manuf. 2014;228:757-64. https://doi.org/10.1177/0954405413501670.
  • 101. Pacheco PAP, Silveira ME. Numerical simulation of electric hot incremental sheet forming of 1050 aluminum with and without preheating. Int J Adv Manuf Technol. 2018;94:3097-108. https://doi.org/10.1007/s00170-017-0879-8.
  • 102. Li Z, He S, Zhang Y, An Z, Gao Z, Lu S. Numerical prediction of Joule heating effect in electric hot incremental sheet forming. Int J Adv Manuf Technol. 2022;121:8221-30. https://doi.org/10.1007/s00170-022-09888-5.
  • 103. Dong HR, Li XQ, Li Y, Wang YH, Wang HB, Peng XY, Li DS. A review of electrically assisted heat treatment and forming of aluminum alloy sheet. Int J Adv Manuf Technol. 2022;120:7079-99. https://doi.org/10.1007/s00170-022-08996-6.
  • 104. Salandro WA, Bunget CJ, Mears L. Several factors affecting the electroplastic effect during an electrically-assisted forming process. J Manuf Sci Eng. 2011;133:1-5. https://doi.org/10.1115/1.4004950.
  • 105. Perkins TA, Kronenberger TJ, Roth JT. Metallic forging using electrical flow as an alternative to warm/hot working. J Manuf Sci Eng. 2007;129:84-94. https://doi.org/10.1115/1.2386164.
  • 106. Salandro WA, Jones JJ, McNeal TA, Roth JT, Hong ST, Smith MT. Formability of Al 5xxx sheet metals using pulsed current for various heat treatments. J Manuf Sci Eng. 2010;132:1-11. https://doi.org/10.1115/1.4002185.
  • 107. Conrad H. Electroplasticity in metals and ceramics. Mater Sci Eng A. 2000;287:276-87. https://doi.org/10.1016/s0921-5093(00)00786-3.
  • 108. Magnus CS. Joule heating of the forming zone in incremental sheet metal forming: part 1: state of the art and thermal process modelling. Int J Adv Manuf Technol. 2017;91:1309-19. https://doi.org/10.1007/s00170-016-9786-7.
  • 109. Min J, Seim P, Storkle D, Thyssen L, Kuhlenkotter B. Thermal modeling in electricity assisted incremental sheet forming. Int J Mater Form. 2017;10:729-39. https://doi.org/10.1007/s12289-016-1315-6.
  • 110. Fan G, Gao L. Numerical simulation and experimental investigation to improve the dimensional accuracy in electric hot incremental forming of Ti-6Al-4V titanium sheet. Int J Adv Manuf Technol. 2014;72:1133-41. https://doi.org/10.1007/s00170-014-5769-8.
  • 111. Meier H, Magnus C. Incremental sheet metal forming with direct resistance heating using two moving tools. Key Eng Mater. 2013;554-557:1362-7. https://doi.org/10.4028/www.scientific.net/KEM.554-557.1362.
  • 112. Tan JC, Tan MJ. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Mater Sci Eng A. 2003;339:124-32. https://doi.org/10.1016/S0921-5093(02)00096-5.
  • 113. Yoon J, Lee Y. Fracture mechanism of Mg-3Al-1Zn sheet at the biaxial state with respect to forming temperatures. Mater Des. 2014;55:43-9. https://doi.org/10.1016/j.matdes.2013.10.024.
  • 114. Ning Y, Yao Z, Fu MW, Guo H. Dynamic recrystallization of the hot isostatically pressed P/M superalloy FGH4096 in hot working process. Mater Sci Eng A. 2010;527:6968-74. https://doi.org/10.1016/j.msea.2010.07.018.
  • 115. Li Y, Gan W, Zhou W, Li D. Review on residual stress and its effects on manufacturing of aluminium alloy structural panels with typical multi-processes. Chinese J Aeronaut. 2022. https://doi.org/10.1016/j.cja.2022.07.020.
  • 116. Blaha F, Langenecker B. Dehnung von zink-kristallen unter ultraschalleinwirkung. Naturwissenschaften. 1955;42:556.
  • 117. Langenecker B. Work-softening of metal crystals by alternating the rate of glide strain. Acta Metall. 1961;9:937-40.
  • 118. Bunget C, Ngaile G. Influence of ultrasonic vibration on microextrusion. Ultrasonics. 2011;51:606-16. https://doi.org/10.1016/j.ultras.2011.01.001.
  • 119. Siegert K, Ulmer J. Influencing the friction in metal forming processes by superimposing ultrasonic waves. CIRP Ann Manuf Technol. 2001;50:195-200. https://doi.org/10.1016/S0007-8506(07)62103-9.
  • 120. Wang Zhen MB, Min W. Study on the Influence of Ultrasonic Vibration Field on Micro-drawing Forming Performance and Surface Quality of Thin-walled Capillaries of Superalloys. In: C.S. of M. Engineering (Ed.), Innov. Plast. Process. Technol. Promot. Dev. Intell. Manuf. 15th Natl. Plast. Eng. Soc. Annu. Conf. 7th Glob. Chinese Plast. Process. Technol. Exch. Conf., Jinan, 2017: pp. 6-18.
  • 121. Hong Z, Tao X, Xiaobiao S et al. Simulation study of ultrasonic drawing second- order transduction system based on ANSYS. Mech Des Manuf (Chinese Version). 2011;6:189-91.
  • 122. Haiqun Q, Hong Z, Xiaoguo S, et al. Experimental study on applied anti-tensile force composite ultrasonic vibration drawing. J Harbin Eng Univ (Chinese Version). 2013;34:402-8. https://doi.org/10.1190/segam2013-0137.1.
  • 123. Vahdati M, Mahdavinejad R, Amini S. Investigation of the ultrasonic vibration effect in incremental sheet metal forming process. Proc Inst Mech Eng Part B J Eng Manuf. 2017;231:971-82. https://doi.org/10.1177/0954405415578579.
  • 124. Amini S, HosseinpourGollo A, Paktinat H. An investigation of conventional and ultrasonic-assisted incremental forming of annealed AA1050 sheet. Int J Adv Manuf Technol. 2017;90:1569-78. https://doi.org/10.1007/s00170-016-9458-7.
  • 125. Long Y, Li Y, Sun J, Ille I, Li J, Twiefel J. Effects of process parameters on force reduction and temperature variation during ultrasonic assisted incremental sheet forming process. Int J Adv Manuf Technol. 2018;97:13-24. https://doi.org/10.1007/s00170-018-1886-0.
  • 126. Li Y, Zhai W, Wang Z, Li X, Sun L, Li J, Zhao G. Investigation on the material flow and deformation behavior during ultrasonic-assisted incremental forming of straight grooves. J Mater Res Technol. 2020;9:433-54. https://doi.org/10.1016/j.jmrt.2019.10.072.
  • 127. Alharbi N. Experimental study on designing optimal vibration amplitude in ultrasonic assisted incremental forming of AA6061-T6. Eng Sci Technol Int J. 2022;30: 101041. https://doi.org/10.1016/j.jestch.2021.07.004.
  • 128. Yang M, Bai L, Li Y, Yuan Q. Influences of vibration parameters on formability of 1060 aluminum sheet processed by ultrasonic vibration-assisted single point incremental forming. Adv Mater Sci Eng. 2019. https://doi.org/10.1155/2019/8405438.
  • 129. Cheng Z, Li Y, Li J, Li F, Meehan PA. Ultrasonic assisted incremental sheet forming: constitutive modeling and deformation analysis. J Mater Process Technol. 2022. https://doi.org/10.1016/j.jmatprotec.2021.117365.
  • 130. Obikawa T, Hayashi M. Ultrasonic-assisted incremental micro-forming of thin shell pyramids of metallic foil. Micromachines. 2017. https://doi.org/10.3390/mi8050142.
  • 131. Cheng Z, Li Y, Li J, Li F, Meehan PA. Ultrasonic assisted incremental sheet forming: constitutive modeling and deformation analysis. J Mater Process Technol. 2022;299: 117365. https:// doi.org/10.1016/j.jmatprotec.2021.117365.
  • 132. Deshpande A, Hsu K. Acoustic energy enabled dynamic recovery in aluminium and its effects on stress evolution and post-deformation microstructure. Mater Sci Eng A. 2018;711:62-8. https://doi.org/10.1016/j.msea.2017.11.015.
  • 133. Cingara HJMA. New formula for calculating flow curves from high temperature constitutive data for 300 austenitic steels. J Mater Process Technol. 1992;36:31-42.
  • 134. Lin YC, Wen DX, Deng J, Liu G, Chen J. Constitutive models for high-temperature flow behaviors of a Ni-based superalloy. Mater Des. 2014;59:115-23. https://doi.org/10.1016/j.matdes.2014.02.041.
  • 135. Shi L, Wu CS, Gao S, Padhy GK. Modified constitutive equation for use in modeling the ultrasonic vibration enhanced friction stir welding process. Scr Mater. 2016;119:21-6. https://doi.org/10.1016/j.scriptamat.2016.03.023.
  • 136. Abu Aal-Rub RK, Voyiadjis GZ. A physically based gradient plasticity theory. Int J Plast. 2006;22:654-84. https://doi.org/10.1016/j.ijplas.2005.04.010.
  • 137. Gao CY, Zhang LC. Constitutive modelling of plasticity of fcc metals under extremely high strain rates. Int J Plast. 2012;32-33:121-33. https://doi.org/10.1016/j.ijplas.2011.12.001.
  • 138. Yao Z, Kim GY, Wang Z, Faidley LA, Zou Q, Mei D, Chen Z. Acoustic softening and residual hardening in aluminum: Modeling and experiments. Int J Plast. 2012;39:75-87. https://doi.org/10.1016/j.ijplas.2012.06.003.
  • 139. Li Y, Cheng Z, Chen X, Long Y, Li X, Li F, Li J, Twiefel J. Constitutive modeling and deformation analysis for the ultrasonic-assisted incremental forming process. Int J Adv Manuf Technol. 2019;104:2287-99. https://doi.org/10.1007/s00170-019-04031-3.
  • 140. Dong H, Peng X, Wang H, Fu L, Shiteng Z, Li X, Li L. An anomalous compression-induced softening behavior of AA6014-T4P during cyclic loading. Eur J Mech/A Solids. 2022. https://doi.org/10.1016/j.euromechsol.2022.104864.
  • 141. Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M. Electromagnetic forming-a review. J Mater Process Technol. 2011;211:787-829. https://doi.org/10.1016/j.jmatprotec.2010.12. 012.
  • 142. Cui X, Li J, Mo J, Fang J, Zhu Y, Zhong K. Investigation of large sheet deformation process in electromagnetic incremental forming. Mater Des. 2015;76:86-96. https://doi.org/10.1016/j.matdes.2015.03.060.
  • 143. Cui XH, Mo JH, Li JJ, Zhao J, Zhu Y, Huang L, Li ZW, Zhong K. Electromagnetic incremental forming (EMIF): a novel aluminum alloy sheet and tube forming technology. J Mater Process Technol. 2014;214:409-27. https://doi.org/10.1016/j.jmatprotec.2013.05.024.
  • 144. Guo K, Lei X, Zhan M, Tan J. Electromagnetic incremental forming of integral panel under different discharge conditions. J Manuf Process. 2017;28:373-82. https://doi.org/10.1016/j.jmapro.2017.01.010.
  • 145. Zhiqiang LJW, Liang H. Optimization design of electromagnetic progressive forming coil for large aluminum alloy curved parts. J Plast Eng (Chinese Version). 2015;22:71-7.
  • 146. Cui X, Mo J, Li J, Xiao X, Zhou B, Fang J. Large-scale sheet deformation process by electromagnetic incremental forming combined with stretch forming. J Mater Process Technol. 2016;237:139-54. https://doi.org/10.1016/j.jmatprotec.2016.06.004.
  • 147. Cui X, Du Z, Xiao A, Yan Z, Qiu D, Yu H, Chen B. Electromagnetic partitioning forming and springback control in the fabrication of curved parts. J Mater Process Technol. 2021;288: 116889. https://doi.org/10.1016/j.jmatprotec.2020.116889.
  • 148. Feng F, Li J, Chen R, Huang L, Su H, Fan S. Multi-point die electromagnetic incremental forming for large-sized sheet metals. J Manuf Process. 2021;62:458-70. https://doi.org/10.1016/j.jmapro.2020.12.022.
  • 149. Su H, Huang L, Li J, Xiao W, Zhu H, Feng F, Li H, Yan S. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings. J Mater Sci Technol. 2021;70:125-35. https://doi.org/10.1016/j.jmst.2020.07.023.
  • 150. Li N, Wang YD, Lin Peng R, Sun X, Liaw PK, Wu GL, Wang L, Cai HN. Localized amorphism after high-strain-rate deformation in TWIP steel. Acta Mater. 2011;59:6369-77. https://doi.org/10.1016/j.actamat.2011.06.048.
  • 151. Armstrong RW, Walley SM. High strain rate properties of metals and alloys. Int Mater Rev. 2008;53:105-28. https://doi.org/10.1179/174328008X277795.
  • 152. Nemat-Nasser S, Guo WG, Cheng JY. Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater. 1999;47:3705-20. https://doi.org/10.1016/S1359-6454(99)00203-7.
  • 153. Zhang H, Ravi-Chandar K. On the dynamics of localization and fragmentation-IV. Expansion of Al 6061-O tubes. Int J Fract. 2010;163:41-65. https://doi.org/10.1007/s10704-009-9441-5.
  • 154. Su H, Huang L, Li J, Ma F, Ma H, Huang P, Zhu H, Feng F. Inhomogeneous deformation behaviors of oblique hole-flanging parts during electromagnetic forming. J Manuf Process. 2020;52:1-11. https://doi.org/10.1016/j.jmapro.2019.12.047.
  • 155. Li N, Yu H, Xu Z, Fan Z, Liu L. Electromagnetic forming facilitates the transition of deformation mechanism in 5052 aluminum alloy. Mater Sci Eng A. 2016;673:222-32. https://doi.org/10.1016/j.msea.2016.07.039.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab01d752-20a0-4225-aab0-0e299b77eb45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.