Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study presents 3-D numerical simulations of aerodynamic flow inside micro-turbine engine combustion chamber. The process of creation of a numerical grid and its properties are described, and then on the basis of gas-dynamic calculation of the theoretical engine cycle boundary conditions were specified. For the assumed boundary conditions, numerical simulations of aerodynamics of "cold" air flow through the combustion chamber (without fuel supply to the interior) were performed. Numerical experiment was also conducted, allowing the investigation of the influence of thermal energy supply into the combustion chamber on the aerodynamic flow through the chamber. The work ends with discussion of the results, in particular concerning the loss of pressure in the combustion chamber and possible design changes to minimize them.
Czasopismo
Rocznik
Tom
Strony
68--79
Opis fizyczny
Bibliogr. 19 poz., rys., tab. wykr.
Twórcy
autor
- Warsaw University of Technology, Nowowiejska 21 / 25, 00-665 Warsaw, Poland
autor
- Warsaw University of Technology, Nowowiejska 21 / 25, 00-665 Warsaw, Poland
Bibliografia
- [1] T. Kamps, Model Jet Engines, Traplet Publications Ltd (2005).
- [2] K. Schreckling, Home Built Model Turbines, Traplet Publications Ltd (2005).
- [3] K. Schreckling, Gas Turbines for Model Aircraft, Traplet Publications Ltd (2003).
- [4] B. F. Kolanowski, Guide to Microturbines, Fairmont Press (2004).
- [5] G. Bouldier, L. Y. M. Gicquel, T. Poinsot, D. Bissieres, C. Berat, Comparison of les, rans and experiments in aeronautical gasturbine combustion chamber, Proceedings of the Combustion Institute 31 (2) (2007) 3075–3082.
- [6] C. A. Gonzales, K. C. Wong, S. Armfield, Computational study of a micro-turbine engine combustor using large eddy simulation and reynolds average turbulence models, ANIZAM Journal 49 (2008) 407–422.
- [7] P. D. Marsh, Rcu review: Twenty years of micro-turbojet engines, Magazine Horizon (2003) 1–8.
- [8] M. D. Agrawal, S. Bharani, Performance evaluation of a reverse-flow gas turbine combustor using modified hydraulic analogy, Journal MC 85 (2004) 34–44.
- [9] H. S. Lee, J. J. Yoon, The study on development of low nox combustor with lean burn characteristics for 20kw class microturbine, in: Proceedings of ASME Turbo Expo, Vienna, Austria, 2004.
- [10] R. Tuccillo, M. C. Cameretti, Comparing di_erent solutions for the micro-gas turbine combustor, in: Proceedings of ASME Turbo Expo, Viena, Austria, 2004.
- [11] S. Adahia, A. Iwamotoa, S. Hayashib, H. Yamadab, S. Kaneko, Emissions in combustion of lean methaneair and biomass-air mixtures supported by primary hot burned gas in multi-stage gas turbine combustor, Proceedings of the Combustion Institute 31 (2) (2007) 3131–3138.
- [12] S. Antas, P. Wolanski, Obliczenia termogazodynamicznelotniczych silników turbinowych, Wydawnictwo Politechniki Warszawskiej, Warszawa, 1989.
- [13] P. Dzierzanowski, Turbinowe silniki odrzutowe, Wydawnictwa Łączności i Komunikacji, Warszawa, 1983.
- [14] S. James, J. Zhu, M. Anand, Large-eddy simulation as a gas turbine combustor at different pressure and swirl conditions, Applied Thermal Engineering 19 (19) (1999) 949–967.
- [15] M. Gieras, Komory spalania silników turbinowych, organizacja procesu spalania, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2010.
- [16] A. H. Lefebvre, Gas Turbine Combustion, Taylor & Francis, 1999.
- [17] K. Hunecke, Fundamentals of Theory, Design and Operation, Motorbooks, International Publishers and Wholesalers, 1997.
- [18] R. Łapucha, Komory spalania silników turboodrzutowych, Wydawnictwa Naukowe Instytutu Lotnictwa, Warszawa, 2004.
- [19] J. D. Mattingly, Aircraft Engine Design, American Institute of Aeronautics and Astronautics, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaff607c-b8ff-40d2-aefe-d0feffd3650b