PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MHD stagnation point flow of micro nanofluid towards a shrinking sheet with convective and zero mass flux conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article the stagnation point flow of electrically conducting micro nanofluid towards a shrinking sheet, considering a chemical reaction of first order is investigated. Involvement of magnetic field occurs in the momentum equation, whereas the energy and concentrations equations incorporated the influence of thermophoresis and Brownian motion. Convective boundary condition on temperature and zero mass flux condition on concentration are implemented. Partial differential equations are converted into the ordinary ones using suitable variables. The numerical technique is utilized to discuss the results for velocity, microrotation, temperature, and concentration fields.
Rocznik
Strony
155--162
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
autor
  • Department of Mathematics, COMSATS Institute of Information Technology, Sahiwal 57000, Pakistan
  • Department of Mathematics, COMSATS Institute of Information Technology, Sahiwal 57000, Pakistan
autor
  • Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan
  • Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
autor
  • Department of Mathematics, COMSATS Institute of Information Technology, Sahiwal 57000, Pakistan
autor
  • Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Bibliografia
  • [1] S.A. Shehzad, Z. Abdullah, A. Alsaedi, F.M. Abbasi, and T. Hayat, “Thermally radiative three-dimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field”, J. Magnet. Magnet. Mater. 397, 108-114 (2016).
  • [2] L. Zheng, J. Niu, X. Zheng, and L. Ma, “Dual solutions for flow and Radiative heat transfer of micropolar fluid over stretching/ shrinking sheet”, Int. J. Heat Mass Transf. 55 (25-26), 7577-7586 (2012).
  • [3] B.J. Gireesha, A.J. Chamkha, S. Manjunatha, and C.S. Bagewadi, “Mixed convective flow of a dusty fluid over a vertical stretching sheet with non-uniform heat source/sink and radiation”, Int. J. Numer. Meth. Heat Fluid Flow 23 (4), 598-612 (2013).
  • [4] B.J. Gireesha, G.K. Ramesh, M.S. Abel, and C.S. Bagewadi, “Boundary layer flow and heat transfer of a dusty fluid flow over a stretching sheet with non-uniform heat source/sink”, Int. J. Multiphase Flow 37 (8), 977-982 (2011).
  • [5] A. Sharma, V.V. Tyagi, C.R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and application”, Renew. Sustain. Energy Rev. 13 (2), 318-345 (2009).
  • [6] S.U.S. Choi and J.A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles”, ASME International Engineering Congress and Exposition, San Francisco 66, 99-105 (1995).
  • [7] D.K. Devendiran and V.A. Amirtham, “A review on preparation, characterization, properties and applications on nanofluids”, Renew. Sustain. Energy Rev. 60, 21-40 (2016).
  • [8] M.M. Rahman, W.A. Al-Mazroui, F.S. Al-Hatmi, M.A. Al-Lawatia, and I.A. Eltayeb, “The role of a convective surface in models of the radiative heat transfer in nanofluids”, Nuclear Eng. Design 275, 382-392 (2014).
  • [9] S.A. Shehzad, T. Hayat, and A. Alsaedi, “Influence of convective heat and mass conditions in MHD flow of nanofluid”, Bull. Pol. Ac.: Tech. 63 (2), 465-474 (2015).
  • [10] S.A. Shehzad, Z. Abdullah, F.M. Abbasi, T. Hayat, and A. Alsaedi, “Magnetic field effect in three-dimensional flow of an Oldroyd- B nanofluid over a radiative surface”, J. Magnet. Magnet. Mater. 399, 97-108 (2016).
  • [11] T. Hayat, T. Muhammad, B. Ahmad, and S.A. Shehzad, “Impact of magnetic field in three-dimensional flow of Sisko nanofluid with convective condition”, J. Magnet. Magnet. Mater. 413, 1-8 (2016).
  • [12] M.M. Rashidi, N.V. Ganesh, A.K.A. Hakeem, and B. Ganga, “Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation”, J. Mol. Liq. 198, 234-238 (2014).
  • [13] T. Hayat, T. Muhammad, S.A. Shehzad, G.Q. Chen, and I.A. Abbas, “Interaction of magnetic field in flow of Maxwell nanofluid with convective effect”, J. Magnet. Magnet. Mater. 389, 48-55 (2015).
  • [14] T. Hayat, M. Imtiaz, and A. Alsaedi, “Unsteady flow of nanofluid with double stratification and magnetohydrodynamics”, Int. J. Heat Mass Transf. 92, 100-109 (2016).
  • [15] T. Hayat, M. Waqas, M.I. Khan, and A. Alsaedi, “Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects”, Int. J. Heat Mass Transf. 102, 1123-1129 (2016).
  • [16] T. Hayat, M.I. Khan, M. Waqas, T. Yasmeen, and A. Alsaedi, “Viscous dissipation effect in flow of magnetonanofluid with variable properties”, J. Mol. Liq. 222, 47-54 (2016).
  • [17] A.C. Eringen, “Simple micropolar fluids”, Int. J. Eng. Sci. 2, 205-217 (1964).
  • [18] A.C. Eringen, “Theory of micropolar fluids”, J. Appl. Math. Mech. 16, 1-18 (1966).
  • [19] M. Ashraf, and S. Bashir, “Numerical simulation of MHD stagnation point flow and heat transfer of a micropolar fluid towards a heated shrinking sheet”, Int. J. Numer. Methods Fluids 69 (2), 384-398 (2012).
  • [20] M.M. Rashidi, M. Ashraf, B. Rostami, M.T. Rastegari, and S. Bashir, “Mixed convection boundary-layer flow of a micropolar fluid towards a heated shrinking sheet by homotopy analysis method”, Thermal Sci. 20 (1), 21-34 (2016).
  • [21] A. Rauf, M. Ashraf, K. Batool, T. Hussain, and M.A. Meraj, “MHD flow of a micropolar fluid over a stretchable disk in a porous medium with heat and mass transfer”, AIP Adv. 5, 077156 (2015).
  • [22] M. Ashraf and A.R. Wehgal, “MHD flow and heat transfer of a micropolar fluid between two porous disks”, Appl. Math. Mech. 33 (1), 51-64 (2012).
  • [23] S.A. Shehzad, M. Waqas, A. Alsaedi, and T. Hayat, “Flow and heat transfer over an unsteady stretching sheet in a micropolar fluid with convective boundary conditions”, J. Appl. Fluid Mech. 9 (3), 1437-1445 (2016).
  • [24] B. Jalilpour, S. Jafarmadar, D.D. Ganji, A.B. Shotorban, and H. Taghavifar, “Heat generation/absorption on MHD stagnation flow of nanofluid towards a porous stretching sheet with prescribed surface heat flux”, J. Mol. Liq. 195, 194-204 (2014).
  • [25] D. Pal, G. Mandal, and K. Vajravelu, “Flow and heat transfer of nanofluids at a stagnation point flow over a stretching/shrinking surface in a porous medium with thermal radiation”, Appl. Math. Comput. 238, 208-224 (2014).
  • [26] D. Pal, and G. Mandal, “Influence of thermal radiation of mixed convection heat and mass transfer stagnation-point flow in nanofluids over stretching/shrinking sheet in a porous medium with chemical reaction”, Nuclear Eng. Design 273, 644-652 (2014).
  • [27] T. Hayat, M.B. Ashraf, S.A. Shehzad, and A. Alsaedi, “Mixed convection flow of Casson nanofluid over a stretching sheet with convectively heated chemical reaction and heat source/sink”, J. Appl. Fluid Mech. 8 (4), 803-813 (2015).
  • [28] A.V. Kuznetsov, and D.A. Nield, “Natural convective boundary- layer flow of a nanofluid pas a vertical plate: A revised- model”, Int. J. Thermal Sci. 77, 126-129 (2014).
  • [29] T. Hayat, T. Muhammad, S.A. Shehzad, and A. Alsaedi, “Three-dimensional boundary layer flow of Maxwell nanofluid: mathematical model”, Appl. Math. Mech. 36 (6), 747-762 (2015).
  • [30] T. Hayat, S. Farooq, A. Alsaedi, and B. Ahmad, “Hall and radial magnetic field effects on radiative peristaltic flow of Carreau-Yasuda fluid in a channel with convective heat and mass transfer”, J. Magnet. Magnet. Mater. 412, 207-216 (2016).
  • [31] T. Hayat, M. Imtiaz, and A. Alsaedi, “MHD 3D flow of nanofluid in presence of convective conditions”, J. Mol. Liq. 212, 203-208 (2015).
  • [32] T. Hayat, Y. Saeed, S. Asad, and A. Alsaedi, “Convective heat and mass transfer in flow by an inclined stretching cylinder”, J. Mol. Liq. 220, 573-580 (2016).
  • [33] M. Imtiaz, T. Hayat, A. Alsaedi, and B. Ahmad, “Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects”, Int. J. Heat Mass Transf. 101, 948-957 (2016).
  • [34] W.M.K.A.D. Zaimi, B. Bidin, N.A.A. Bakar, and R.A. Hamid, “Applications of Runge-Kutta-Fehlberg method and shooting technique for solving classical Blasius equation”, World Appl. Sci. J. 17, 10-15 (2012).
  • [35] A.K. Jhankal and M. Kumar, “Magnetohydrodynamic (MHD) plane poiseuille flow with variable viscosity and unequal wall temperature”, Iran. J. Chem. Eng. 11 (1), 63-68 (2014).
  • [36] O.D. Makinde, S. Khamis, M.S. Tshehla, and O. Franks, “Analysis of heat transfer in Berman flow of Nanofluids with Navier slip, viscous dissipation and convective cooling”, Adv. Math. Phys. 2014 (4), 1-13 (2014).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aafb3e81-f42f-4930-9db1-b44d1d3194f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.