Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
An ecoefficient, economical and sustainable valorization process for the synthesis of Co3O4 from waste lithium-ion battery (LIB) by leaching-solvent extract-scrubbing-precipitation stripping route has been developed. Through an optimization, the waste LIB cathode was leached using 2000 mole/m3 of H2SO4 and 5 Vol. % of the H2O2 at a pulp density of 100 kg/m3 under leaching time 60 minutes and temperature 75°C. From the separated leach liquor, cobalt was purified by saponified Cyanex 272. From cobalt, loaded Cyanex 272 impurities were scrubbed and the CoC2O4·2H2O was recovered through precipitation stripping. Finally, the precipitate was calcined to synthesize Co3O4, which is a precursor for LIB cathode materials manufacturing. From TGA-DTA, followed by XRD analysis it was confirmed that at 200°C the CoC2O4·2H2O can be converted to anhydrous CoC2O4 and at 350°C the anhydrous can be converted to Co3O4 and at 1100°C the Co3O4 can be converted to CoO. Through reported route waste LIB can back to LIB manufacturing process through a versatile and flexible industrial approach.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1037--1042
Opis fizyczny
Bibliogr. 18 poz., fot., rys., wykr.
Twórcy
autor
- Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE), Yongin, Republic of Korea
autor
- Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 305-350, Republic of KoreaMineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 305-350, Republic of Korea
autor
- Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE), Yongin, Republic of Korea
Bibliografia
- [1] B. Swain, J. Jeong, J.-C Lee, G.-H. Lee, J.-S. Sohn, Journal of Power Sources 167, 536-544 (2007).
- [2] P. Zhang, T. Yokoyama, O. Itabashi, T. M. Suzuki, K. Inoue, Hydrometallurgy 47, 259-271 (1998).
- [3] X. Chen, C. Luo, J. Zhang, J. Kong, T. Zhou, ACS Sustainable Chemistry & Engineering 3, 3104-3113 (2015).
- [4] http://www.marketsandmarkets.com lithium Ion Battery Market worth 68.97 Billion USD by 2022 http://www.marketsandmarkets.com/PressReleases/lithium-ion-battery.asp (2017).
- [5] W. Y. Li, L. N. Xu, J. Chen, Advanced Functional Materials 15, 851-857 (2005).
- [6] X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Advanced Materials 20, 258-262 (2008).
- [7] S. K. Meher, G. R. Rao, The Journal of Physical Chemistry C 115, 15646-15654 (2011).
- [8] T. Ozkaya, A. Baykal, Y. Koseoğlu, H. Kavas, Open Chemistry 7 (2009).
- [9] L. Jin, X. Li, H. Ming, H. Wang, Z. Jia, Y. Fu, J. Adkins, Q. Zhou, J. Zheng, RSC Advances 4, 6083-6089 (2014).
- [10] C. J. Denis, C. J. Tighe, R. I. Gruar, N. M. Makwana, J. A. Darr, Crystal Growth & Design 15, 4256-4265 (2015).
- [11] J. K. Sharma, P. Srivastava, G. Singh, M. S. Akhtar, S. Ameen, Materials Science and Engineering: B 193, 181-188 (2015).
- [12] H. Xu, J.-X. Zhuang, J.-L. Li, J.-L. Zhang, H.-L. Lu, Ionics 20, 489-494 (2014).
- [13] K. Sinkó, G. Szabó, M. Zrínyi, Journal of Nanoscience and Nanotechnology 11, 4127-4135 (2011).
- [14] F. Yılmaz, D.-J. Lee, J.-W. Song, H.-S. Hong, H.-T. Son, J.-S. Yoon, S.-J. Hong, Powder Technology 235, 1047-1052 (2013).
- [15] B. Swain, Journal of Chemical Technology & Biotechnology 2017).
- [16] B. Swain, C. Mishra, L. Kang, K.-S. Park, C. G. Lee, H. S. Hong, J.-J. Park, Journal of Power Sources 281, 265-271 (2015).
- [17] I. Luisetto, F. Pepe, E. Bemporad, Journal of Nanoparticle Research 10, 59-67 (2008).
- [18] M. A. Mohamed, A. K. Galwey, S. A. Halawy, Thermochimica Acta 429, 57-72 (2005).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaf986a5-20fb-4624-8d75-997df597a297