Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The article presents (and extends) the basic assumptions of the analytical method for designing track geometric layouts. The individual elements of the layout (straight sections, circular arcs and transition curves) are described using mathematical equations and connected with each other while maintaining the condition of tangent compliance. The method covers various design cases: a symmetrical case, with transition curves of the same type and the same length, an asymmetrical case, resulting from different types and lengths of transition curves, as well as methods of designing compound and reverse curves. The work presents a detailed design procedure for the typical, most common case in which the transition curves are symmetrical in relation to the circular arc. Two basic variants differing in the location of the local coordinate system are considered. In the standard (universal) variant, the location of the beginning of the system in the PL-2000 system is not known and is determined only in the final phase of the procedure. Due to this, some interpretation problems may arise. In the case of a symmetrical geometric layout, these difficulties can be avoided thanks to the introduced modification consisting of locating the origin of the local coordinate system at the intersection of two main directions of the route. The article presents computational algorithms for both discussed variants. The benefits of the introduced modification are illustrated by the presented computational examples.
Wydawca
Czasopismo
Rocznik
Tom
Strony
171--185
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Gdańsk University of Technology, Department of Transport Engineering
Bibliografia
- 1. AutoCAD Civil 3D: Design, Engineering and Construction Software, Autodesk, San Rafael, CA, http://www.autodesk.pl/products/civil-3d.
- 2. Bentley Rail Track: Rail Infrastructure De sign and Optimization, Bentley Systems, Incorporated, Exton, PA, USA, https://www.bentley.com/soft ware/rail-design.
- 3. Bałuch H., Bałuch M.: Kształtowanie układów geometrycznych toru z uwzględnieniem trwałości nawierzchni [Shaping geometric layouts of the track, taking into account the durability of the Surface], TTS Technika Transportu Szynowego, nr 7–8/2009, s. 39–42, Instytut Naukowo-Wydawniczy TTS, Radom.
- 4. Hodas S.: Design of railway track for speed and highspeed railways, Procedia Engineering, vol. 91/2014,pp. 256–261, Elsevier.
- 5. Soleymanifar M., Tavakol M.: Comparative study of geometric design regulations of railways based on standard optimization, In Proc. 6th International Conference on Researches in Science and Engineering & 3rd International Congress on Civil, Architecture and Urbanism in Asia, Kasem Bundit University, Bangkok, Th ailand, 9th September 2021.
- 6. Aghastya A., et al.: A new geometric planning approach for railroads based on satellite imagery, AIP Conference Proceedings, vol. 2671, 2023, 050005, AIP Publishing.
- 7. Zboiński K., Woźnica P.: Optimisation of polynomial railway transition curves of even degrees, The Archives of Transport, iss. 3/2015, pp. 71−86, Wydział Transportu Politechniki Warszawskiej.
- 8. Bugarin M.R., Orro A., Novales M.: Geometry of high speed turnouts, Transportation Research Record: Journal of the Transportation Research Board, vol. 2261, iss. 1/2011, pp. 64−72, Sage Journals.
- 9. Fellinger M., Marschnig S., Wilfl ing P.A.: Innovative track geometry data analysis for turnouts – Preparations to enable the turnout behaviour description, In Proc. 12th World Congress on Railway Research: Railway Research to Enhance the Customer Experience, Tokyo, Japan, October 2019.
- 10. Guerrieri M.: Fundamentals of railway design, Chapter: The alignment design of ordinary and high-speed railways, 2023, pp. 21–56, Springer Link.
- 11. Andrade A.R., Teixeira P.F.: A Bayesian model to assess rail track geometry degradation through its life-cycle, Research in Transportation Economics, iss. 1/2012, pp. 1–8, ScienceDirect.
- 12. Li Z.-W., Liu X.-Z., He Y.-L.: Identification of temperature-induced deformation for HSR slab track using track geometry measurement data, Sensors, iss. 24/2019, 5446, MDPI.
- 13. Khajehei H. et al.: Allocation of effective maintenance limit for railway track geometry, Structure and Infrastructure Engineering, iss. 12/2019, pp. 1597−1612, Taylor & Francis Online.
- 14. Neuhold J., Vidovic I., Marschnig S.: Preparing track geometry data for automated maintenance planning, Journal of Transportation Engineering, Part A: Systems, iss. 5/2020, 04020032, ASCE.
- 15. Sadeghi J. et al.: Development of railway ride comfort prediction model: Incorporating track geometry and rolling stock conditions, Journal of Transportation Engineering, Part A: Systems, iss. 3/2020,04020006, ASCE.
- 16. Sauni M. et al.: Investigating root causes of railway track geometry deterioration – A data mining approach, Frontiers in Built Environment, vol. 6/2020,122, Frontiers.
- 17. Soleimanmeigouni I. et al.: Prediction of railway track geometry defects: a case study, Structure and Infrastructure Engineering, iss. 7/2020,pp. 987−1001, Taylor & Francis Online.
- 18. Khosravi M. et al.: Reducing the positional errors of railway track geometry measurements using alignment methods: A comparative case study, Measurement, vol. 178/2021, 109383, ScienceDirect.
- 19. Judek S. et al.: Preparatory railway track geometry estimation based on GNSS and IMU systems, Remote Sensing, iss. 21/2022, 5472, MDPI.
- 20. Kurhan M., Kurhan D., Hmelevska N.: Maintenance reliability of railway curves using their design parameters, Acta Polytechnica Hungarica, 19, iss. 6/2022, pp. 115–127, Springer.
- 21. Kampczyk A., Rombalska K.: Confi guration of the geometric state of railway tracks in the sustainability development of electrified traction systems, Sensors, iss. 5/2023, 2817, MDPI.
- 22. Koc W., Specht C.: Application of the Polish active GNSS geodetic network for surveying and design of the railroad, In Proc. First International Conference on Road and Rail Infrastructure – CETRA 2010, Opatija, Croatia, pp. 757−762, 2010, University of Zagreb.
- 23. Specht C., Koc W.: Mobile satellite measurements in designing and exploitation of rail roads, Transportation Research Procedia, vol. 14/2016, pp. 625–634, ScienceDirect.
- 24. Koc W.: Design of rail-track geometric systems by satellite measurement, Journal of Transportation Engineering, iss. 1/2012, pp. 114−122, ASCE.
- 25. Koc W.: Th e analytical design method of railway route’s main directions intersection area, Open Engineering, iss. 1/2016, pp. 1−9, De Gruyter.
- 26. Koc W.: Design of compound curves adapted to the satellite measurements, Th e Archives of Transport, iss. 2/2015, pp. 37−49, Wydział Transportu Politechniki Warszawskiej.
- 27. Koc W.: Design of reverse curves adapted to the satellite measurements, Advances in Civil Engineering, vol. 2016, 6503962, Hindawi.
- 28. Regulation of the Council of Ministers of 15 October 2012 on the national spatial reference system (Dz.U. /Journal of Laws/ of 2012, item 1247.
- 29. Moritz H.: Geodetic Reference System 1980, Journal of Geodesy, vol. 74/2000, pp. 128−133, Springer.
- 30. Turiño C.E.: Gauss Krüger projection for areas of wide longitudinal extent, International Journal of Geographical Information Science, iss. 6/2008, pp. 703−719, Taylor & Francis Online.
- 31. Korn G.A., Korn T.M.: Matematyka dla pracowników naukowych i inżynierów, PWN Warszawa 1983.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaf89c29-6648-48a4-b294-a7f025056819
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.