PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An efficient higher order numerica lalgorithm for solving real life application problems in an uncertain environment using triangular fuzzy numer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many researchers have proposed numerical approaches for solving fuzzy nonlinear equations (FNE). Most of the methods used are based on the Newton algorithm. The main difficulty in solving these FNEs is obtaining and inverting the Hessian matrix. In this article, we propose the multi step second derivative free iterative method for solving FNE. The main advantage of our method is that it avoids calculating and inverting the Hessian matrix in each iteration, leading to a significant decrease in computational expenses. We solve some numerical examples and application problems related to the fraction of conversion of gases in an uncertain environment with graphical representations. We compare our results with the existing eighth order iterative method to show the efficiency of our proposed method.
Rocznik
Strony
18--29
Opis fizyczny
Bibliogr. 25poz., rys., tab.
Twórcy
  • Department of Mathematics, School of Advanced Sciences, VIT-AP University Amaravati Andhra Pradesh, India
  • Department of Mathematics, School of Advanced Sciences, VIT-AP University Amaravati Andhra Pradesh, India
Bibliografia
  • [1] Senol, M., Atpinar, S., Zararsiz, Z., Salahshour, S., & Ahmadian, A. (2019). Approximate solution of time-fractional fuzzy partial differential equations. Computational and Applied Mathematics, 38, 1-18.
  • [2] El Fatini, M., Louriki, M., Pettersson, R., & Zararsiz, Z. (2021). Epidemic modeling: diffusion approximation vs. stochastic differential equations allowing reflection. International Journal of Biomathematics, 14(05), 2150036.
  • [3] Jafari, R., Yu, W., Razvarz, S., & Gegov, A. (2021). Numerical methods for solving fuzzy equations: A survey. Fuzzy Sets and Systems, 404, 1-22.
  • [4] Ibrahim, S.M., Mamat, M., & Ghazali, P.L. (2021). Shamanskii method for solving parameterized fuzzy nonlinear equations. An International Journal of Optimization and Control: Theories &Applications (IJOCTA), 11(1), 24-29.
  • [5] Abbasbandy, S., & Asady, B. (2004). Newton’s method for solving fuzzy nonlinear equations. Applied Mathematics and Computation, 159(2), 349-356.
  • [6] Abbasbandy, S., & Ezzati, R. (2006). Newton’s method for solving a system of fuzzy nonlinear equations. Applied Mathematics and Computation, 175(2), 1189-1199.
  • [7] Abbasbandy, S., & Jafarian, A. (2006). Steepest descent method for solving fuzzy nonlinear equations. Applied Mathematics and Computation, 174(1), 669-675.
  • [8] Ramli, A., Abdullah, M.L., & Mamat, M. (2010). Broydens method for solving fuzzy nonlinear equations. Advances in Fuzzy Systems, 2010(1), 763270.
  • [9] Sulaiman, I.M., Mamat, M., Malik, M., Nisar, K.S., & Elfasakhany, A. (2022). Performance analysis of a modified Newton method for parameterized dual fuzzy nonlinear equations and its application. Results in Physics, 33, 105140.
  • [10] Magrenan Ruiz, A.A., & Argyros, I.K. (2014). Two-step Newton methods. Journal of Complexity, 30(4), 533-553.
  • [11] Behl, R., Maroju, P., & Motsa, S.S. (2017). A family of second derivative free fourth order continuation method for solving nonlinear equations. Journal of Computational and Applied Mathematics, 318, 38-46.
  • [12] Nadeem, G.A., Aslam, W., & Ali, F. (2023). An optimal fourth-order second derivative free iterative method for nonlinear scientific equations. Kuwait Journal of Science, 50(2A).
  • [13] Ababneh, O. (2022). New iterative methods for solving nonlinear equations and their basins of attraction. WSEAS Transactions on Mathematics Link Disabl., 21, 9-16.
  • [14] Abdul-Hassan, N.Y., Ali, A.H., & Park, C. (2022). A new fifth-order iterative method free from second derivative for solving nonlinear equations. Journal of Applied Mathematics and Computing, 1-10.
  • [15] Maroju, P., Magre˜ n´ an, ´ A.A., Sarr´ıa, ´ I., & Kumar, A. (2020). Local convergence of fourth and f ifth order parametric family of iterative methods in Banach spaces. Journal of Mathematical Chemistry, 58, 686-705.
  • [16] Sivakumar, P., & Jayaraman, J. (2019). Some new higher order weighted Newton methods for solving nonlinear equation with applications. Mathematical and Computational Applications, 24(2), 59.
  • [17] Alshomrani, A.S., Behl, R., & Maroju, P. (2020). Local convergence of parameter based method with six and eighth order of convergence. Journal of Mathematical Chemistry, 58, 841-853.
  • [18] Solaiman, O.S., & Hashim, I. (2019). Two new efficient sixth order iterative methods for solving nonlinear equations. Journal of King Saud University-Science, 31(4), 701-705.
  • [19] Maroju, P., Magre˜ n´an, ´ A.A., Motsa, S.S., & Sarr´ ıa, ´ I. (2018). Second derivative free sixth order continuation method for solving nonlinear equations with applications. Journal of Mathematical Chemistry, 56, 2099-2116.
  • [20] Kumar, A., Maroju, P., Behl, R., Gupta, D.K., & Motsa, S.S. (2018). A family of higher order iterations free from second derivative for nonlinear equations in R. Journal of Computational and Applied Mathematics, 330, 676-694.
  • [21] Sharma, R., & Bahl, A. (2015). An optimal fourth order iterative method for solving nonlinear equations and its dynamics. Journal of Complex Analysis, 2015(1), 259167. [22] Sivakumar, P., Madhu, K., & Jayaraman, J. (2021). Optimal eighth and sixteenth order iterative methods for solving nonlinear equation with basins of attraction. Applied Mathematics E-Notes, 21, 320-343.
  • [23] Farahmand Nejad, Maryam, et al. (2023). Gr¨ obner basis approach for solving fuzzy complex system of linear equations. New Mathematics and Natural Computation, 1-18.
  • [24] Sariman, S.A., & Hashim, I. (2020). New optimal Newton-Householder methods for solving nonlinear equations and their dynamics. Computers, Materials & Continua, 65(1), 69-85.
  • [25] Rafiq, N., Yaqoob, N., Kausar, N., Shams, M., Mir, N.A., Gaba, Y.U., & Khan, N. (2021). Computer-based fuzzy numerical method for solving engineering and real-world applications. Mathematical Problems in Engineering, 2021(1), 6916282.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaf865f6-59eb-4dde-8b52-bfe6d8461754
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.