PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of manganese, iron, and cobalt fractions on soil enzyme activities

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of this study was to investigate the metal impact (Mn, Fe, Co) on enzymatic activities of soils cultivated using the simplified method, during spring, summer, and autumn. The distribution of studied metals between fractions was assesed according to the BCR method. Four fractions were evaluated: acid soluble and exchangeable (F1), reducible, which is bound to Fe/Mn oxides (F2), oxidizable, which is bound to organic matter (F3), and residual (F4). The highest Fe and Co percentage share was stated in fraction F4 (71.0 and 49.2%, respectively). The most of Mn gathered fraction F2 (50.8%). The lowest amount of Mn and Co was found in fraction F3 (13.6 and 17.7%, respectively) and for Fe, in fraction F1 (1.3%). In spring, the significant dependence was noted between F1/Mn/dehydrogenase, F3/Fe/dehydrogenase, F2/Co/dehydrogenase, and F4/Fe/protease. Such a relationship was found between F1/Mn/urease, F3/Fe/urease, F3/Co/urease, and F3/Co/phosphatase during autumn. During summer, F1/Fe caused an increase in phosphatase activity.
Słowa kluczowe
Rocznik
Strony
8--19
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • Institute of Environmental Engineering and Energy Production, Department of Technology in Environmental Engineering, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
  • 1. Abbas M.N., Al-Tameemi I.M., Hasan M.B., Al-Madhhachi A.T. (2021). Chemical removal of cobalt and lithium in contaminated soils using promoted white eggshells with different catalysts. South African Journal of Chemical Engineering, 35, 23–32. https://doi.org/10.1016/j.sajce.2020.11.002
  • 2. Alengebawy A., Abdelkhalek S.T., Qureshi S.R., Wang M.Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics, 9, 42. https://doi.org/10.3390/toxics9030042
  • 3. Banerjee P., Bhattacharya P. (2021). Investigating cobalt in soil-plant-animal-human system: dynamics, impact and management. Journal of Soil Science and Plant Nutrition, 21, 2339–2354. https://doi.org/10.1007/s42729-021-00525-w
  • 4. Boughattas I., Hattab S., Alphonse V., Livet A., Giusti-Miller S., Boussetta H., Banni M., Bousserrhine N. (2019). Use of earthworms Eisenia Andrei on the bioremediation of contaminated area in north of Tunisia and microbial soil enzymes as bioindicator of change on heavy metals speciation. Journal of Soils and Sediments, 19, 296–309. https://doi.org/10.1007/s11368-018-2038-8
  • 5. Chowdhury N., Rasid M. M. (2021). Heavy metal concentrations and its impact on soil microbial and enzyme activities in agricultural lands around ship yards in Chattogram, Bangladesh. Soil Science Annual, 72,135994. https://doi.org/10.37501/soilsa/135994
  • 6. Cruz J. A., Tubana B. S. Fultz L. M. Dalen M. S. Ham J. H. (2022). Identification and profiling of silicate-solubilizing bacteria for plant growth-promoting traits and rhizosphere competence. Rhizosphere, 23, 100566. https://doi.org/10.1016/j.rhisph.2022.100566
  • 7. Daunoras J., Kačergius A., Gudiukaitė R. (2024). Role of soil microbiota enzymes in soil health and activity changes depending on climate change and the type of soil ecosystem. Biology, 13(2), 85. https://doi.org/10.3390/biology13020085
  • 8. Daunoras J., Kačergius A., Gudiukaitė R. (2024). Role of soil microbiota enzymes in soil health and activity changes depending on climate change and the type of soil ecosystem. Biology, 13(2), 85. https://doi.org/10.3390/biology13020085
  • 9. Farrag R.M. (2017). Intracellular siderophore detection in an egyptian, cobalt-treated f. solani isolate using SEM-EDX with reference to its tolerance. Polish Journal of Microbiology, 66(2), 235–243. https://doi.org/10.5604/01.3001.0010.7856
  • 10. Furtak K., Gałązka A. (2019). Enzymatic activity as a popular parameter used to determine the quality of the soil environment. Polish Journal of Agronomy, 37, 22–30. https://doi.org/10.26114/pja.iung.385.2019.37.04
  • 11. Gong C., Shao Y. Luo M., Xu D., Ma L. (2023). Distribution characteristics of heavy metals in different particle size fractions of chinese paddy soil aggregates. Processes, 11(7), 1873. https://doi.org/10.3390/pr11071873
  • 12. Górecka H., Górecki H. (2000). Metals in mineral fertilizers, agrochemicals and substances improving soil structure. Przemysł Chemiczny, 79, 16–19 [in Polish]
  • 13. Hammerl V., Grant K., Pritsch K., Jentsch A., Schloter M., Beierkuhnlein C., Gschwendtner S. (2019). Seasonal effects of extreme weather events on potential extracellular enzyme activities in a temperate grassland soil. Frontiers in Environmental Science, 6. https://doi.org/10.3389/fenvs.2018.00157
  • 14. Hemkemeyer M,, Schwalb S.A., Heinze S., Joergensen R.G., Wichern F. (2021). Functions of elements in soil microorganisms. Microbiological Research, 252, 126832. https://doi.org/10.1016/j.micres.2021.126832
  • 15. Hoffmann G., Teicher K. (1961). Ein kolorimetrisches Verfahren zur Bestimmung der Ureaseaktivität in Böden. Journal of Plant Nutrition and Soil Science, 95(1), 55–63.
  • 16. Hu X., Wei X., Ling J., Chen J. (2021). Cobalt: an essential micronutrient for plant growth? Frontiers in Plant Science, 12, 768523. https://doi.org/10.3389/fpls.2021.768523
  • 17. Iwegbue C.M.A. (2013). Chemical fractionation and mobility of heavy metals in soils in the vicinity of asphalt plants in Delta State, Nigeria. Environmental Forensics, 14(3), 248–259. https://doi.org/10. 1080/15275 922.2013.814178
  • 18. Kabata-Pendias A., Pendias H., 2001. Trace Elements in Soils and Plants. Boca Raton, CRC Press.
  • 19. Khan Z.I., Ashfaq A., Ahmad K., Batool A.I., Aslam M., Ahmad T., Mehmood N., Noorka I.R., Gaafar A.Z., Elshikh M.S., Habib S.S., Khan R., Ugulu I. (2024). Cobalt uptake by food plants and accumulation in municipal solid waste materials compostamended soil: public health implications. Biological Trace Element Research, 202, 4302–4313. https://doi.org/10.1007/s12011-023-04000-8
  • 20. Khoshru B., Mitra D., Nosratabad A.F., Reyhanitabar A., Mandal L., Farda B., Djebaili R., Pellegrini M., Guerra-Sierra B.E., Senapati A. et al. (2023). Enhancing manganese availability for plants through microbial potential: a sustainable approach for improving soil health and food security. Bacteria, 2, 129–141. https://doi.org/10.3390/bacteria2030010
  • 21. Kosiorek M., Wyszkowski M. (2019). Effect of cobalt on the environment and living organisms – a review. Applied Ecology and Environmental Research, 17(5), 11419–11449. https://doi.org/10.15666/aeer/1705_1141911449
  • 22. Kumar S.N.U., Govinda K., Bhavya N., Murthy R.K. (2023). Heavy metal content in chemical fertilizers and its implications on agroecosystems and human health. In: Biradar, N., Shah, R.A., Ahmad, A. (Eds), Recent Advances in Agricultural Sciences and Technology. Ariana Publishers & Distributors, New Delhi, 1748–1759.
  • 23. Lapaz A., Yoshida C.H.P., Gorni P.H., De Freitas-Silva L., de Oliveira Araújo T., Ribeiro C. (2022). Iron toxicity: effects on the plants and detoxification strategies. Acta Botanica Brasilica, 36. https://doi.org/10.1590/0102-33062021abb0131
  • 24. Leśniewska B., Świerad E., Łukowski A., Wiater J., Godlewska-Żyłkiewicz B. (2014). Ultrasound assisted extraction for determination of mobile fractions of copper in soil. Roczniki Państwowego Zakładu Higieny, 65, 67–74.
  • 25. Li J., Jia Y., Dong R., Huang R., Liu P., Li X. Wang Z., Liu G., Chen Z. (2019). Advances in the mechanisms of plant tolerance to manganese toxicity. International Journal of Molecular Sciences, 20(20), 5096. https://doi.org/10.3390/ijms20205096
  • 26. Li Z., McLaren R.G., Metherell A.K. (2001). Cobalt and manganese relationships in New Zealand soils. New Zealand Journal of Agricultural Research, 44(2–3), 191–200. https://doi.org/10.1080/00288233.2001.9513477
  • 27. Łopusiewicz Ł., Mazurkiewicz-Zapałowicz K., Tkaczuk C., Bartkowiak A. (2020). The influence of cobalt ions on growth and enzymatic activity of entomopathogenic fungi used in biological plant protection. Journal of Plant Protection Research, 60(1), 58–67. https://doi.org/10.24425/jppr.2020.132207
  • 28. Łukowski A., Dec D. (2018). Influence of Zn, Cd, and Cu fractions on enzymatic activity of arable soils. Environmental Monitoring and Assessmeant, 190, 278. https://doi.org/10.1007/s10661-018-6651-1
  • 29. Łukowski A., Dec D. (2021). Fractions of Ni, Pb, Cr, and their impact on enzyme activities of arable land cultivated by the simplified method. Minerals, 11(6), 584. https://doi.org/10.3390/min11060584
  • 30. Macura J., Vágnerová K. (1969). Kolorimetrická metoda stanoveni aktivity proteolityckych enzymuv pude. Rostlinná Výroba, 15, 173–180.
  • 31. Malinowska E., Jankowski K. (2020). The effect of different doses of sewage sludge and liming on total cobalt content and its speciation in soil. Agronomy, 10(10), 1550. https://doi.org/10.3390/agronomy10101550
  • 32. Miśkowiec P., Olech, Z. (2020). Searching for the correlation between the activity of urease and the content of nickel in the soil samples: the role of metal speciation. Jornal of Soil Science and Plant Nutrition, 20, 1904–1911. https://doi.org/10.1007/s42729-020-00261-7
  • 33. Naga Raju M., Golla N., Vengatampalli R. (2017). Soil Protease. In: Soil Enzymes. Springer Briefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-319-42655-6_5
  • 34. Pan X., Zhang S., Zhong Q., Gong G., Wang G., Guo X., Xu X. (2020). Effects of soil chemical properties and fractions of Pb, Cd, and Zn on bacterial and fungal communities. Science of the Total Environment, 715, 136904. https://doi.org/10.1016/j.scitotenv.2020.136904
  • 35. Pande A., Mun B.G., Methela N.J., Rahim W., Lee D.S., Lee G.M., Hong J.K., Hussain A., Loake G., Yun B.W. (2022). Heavy metal toxicity in plants and the potential NO-releasing novel techniques as the impending mitigation alternatives. Frontiers in Plant Science, 13, 1019647. https://doi.org/10.3389/fpls.2022.1019647
  • 36. Pupin B., Rangel D.E.N., Nahas E. (2024). Evaluation of soil microbial and enzymatic activity in ecosystems in a coastal region of Brazil. Wetlands, 44, 64. https://doi.org/10.1007/s13157-024-01822-7
  • 37. Rajeev Sharma, S., Mandal K. (2024). Alterations in soil enzyme activities in response to new generation diamides. Water Air and Soil Pollution, 235, 457. https://doi.org/10.1007/s11270-024-07267-2
  • 38. Ren X., Chen Y., Zhang M. Xu Y., Jia H., Wei T. Guo, J. (2023). Effect of organic acids and soil particle size on heavy metal removal from bulk soil with washing. Environmental Geochemistry and Health, 45, 3187–3198. https://doi.org/10.1007/s10653-022-01406-6
  • 39. Röllin H.B. (2011). Manganese: environmental pollution and health effects. In: Nriagu, J.O. (Eds), Encyclopedia of environmental health. Elsevier, Burligton, 617–629.
  • 40. Romero-Freire, A., Sierra-Aragón M., Qiu H., He E. (2023). Editorial for the Special Issue Phytotoxicity of heavy metals in contaminated soils. Toxics, 11, 536. https://doi.org/10.3390/toxics11060536
  • 41. Sarpong L., Boadi N. O., Akoto O. (2023). Metal fractionation and leaching in soils from a gold mining area in the equatorial rainforest zone. Journal of Chemistry, 2023(3), 1–14. https://doi.org/10.1155/2023/3542165
  • 42. Sherene T. (2017). Role of Soil Enzymes in Nutrient Transformation: A Review. Bio Bulletin, 3(1), 109–131.
  • 43. Sorokina E.V., Yudina T.P., Bubnov I.A., Danilov V.S. (2013). Assessment of iron toxicity using a luminescent bacterial test with an Escherichia coli recombinant strain. Microbiology, 82, 439–444. https://doi.org/10.1134/S0026261713040115
  • 44. Tabatabai M.A., Bremner J.M. (1969). Use of p-nitrophenylphosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4), 301–307.
  • 45. Teimouri M., Mohammadi P., Jalili A. (2019). Microbial properties and dehydrogenase activity in Semiarid area, Kerman Province, Iran. Polish Journal of Environmental Studies, 28(2), 853–860. https://doi.org/10.15244/pjoes/85204
  • 46. Thalmann A. (1968). Zur Methodik der Bestimmung der Dehydrogenase Aktivität in Boden Mittels Triphenyltetrazoliumchlorid (TTC). Landwirtschaftliche Forschung, 21, 249–258.
  • 47. Uzoh I.M., Babalola O.O. (2020). Review on increasing iron availability in soil and its content in cowpea (Vigna unguiculata) by plant growth promoting rhizobacteria. African Journal of Food, Agriculture, Nutrition and Development, 20(3), 15779–15799. https://doi.org/10.18697/ajfand.91.18530
  • 48. Wu R., Yao F., Li X., Shi C., Zang X., Shu X., Liu H., Zhang W. (2022). Manganese pollution and its remediation: a review of biological removal and promising combination strategies. Microorganisms, 10(12), 2411. https://doi.org/10.3390/microorganisms10122411
  • 49. Yao H., Bowma, D,, Shi W. (2011). Seasonal variations of soil microbial biomass and activity in warmand cool-season turfgrass systems. Soil Biology and Biochemistry, 43(7), 1536–1543. https://doi.org/10.1016/j.soilbio.2011.03.031
  • 50. Zaborowska M., Kucharski J., Wyszkowska J. (2016). Biological activity of soil contaminated with cobalt, tin, and molybdenum. Environmental Monitoring and Assessment, 188, 398. https://doi.org/10.1007/s10661-016-5399-8
  • 51. Zeinert R., Martinez E., Schmitz J., Senn K., Usman B., Anantharaman V., Aravind L., Waters L.S. (2018). Structure-function analysis of manganese exporter proteins across bacteria. Journal of Biological Chemistry, 293(15), 5715–5730. https://doi.org/10.1074/jbc.M117.790717
  • 52. Zhang Q., Zhang F., Huang C. (2021). Heavy metal distribution in particle size fractions of floodplain soils from Dongchuan, Yunnan Province, Southwest China. Environmental Monitoring and Assessment, 193, 54. https://doi.org/10.1007/s10661-020-08836-8
  • 53. Zhang S., Yi K., Chen A., Shao J., Peng L., Luo S. (2022). Toxicity of zero-valent iron nanoparticles to soil organisms and the associated defense mechanisms: a review. Ecotoxicology, 31(6), 873–883. https://doi.org/10.1007/s10646-022-02565-z
  • 54. Zhang W.T., You M., Hu Y. (2016). The distribution and accumulation characteristics of heavy metals in soil and plant from Huainan coalfield, China. Environmental Progress and Sustainable Energy, 35(4), 1098–1104. https://doi.org/10.1002/ep.12336
  • 55. Zhao P., Adnan M., Xiao Pw., Yang Xf., Wang Hy., Xiao Bh., Xue Sg. (2024). Characterization of soil heavy metals at an abandoned smelting site based on particle size fraction and its implications for remediation strategy. Journal of Central South University, 31, 1076–1091. https://doi.org/10.1007/s11771-024-5646-z
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaf86442-0960-4cf7-9129-dc3a0949360d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.