Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the formation of the shock-induced “hot-spot” in compressible energetic materials has been analyzed. By applying the compressible elastic-viscoplastic material model to a hollow sphere, and solving the governing equations with the initial and boundary conditions, this paper proposes an analytic pore collapse model that is able to simulate the viscoplastic deformation which determines the formation of a “hot-spot”. In this new model there are three mechanisms, of which instantaneous deformation and the subsequent quasi-static incompressible deformation dominate “hot-spot” formation, while quasi-static compressible deformation is of little effect. In comparison with the incompressible solution, this model demonstrates that the bulk compressibility has a great influence on “hot-spot” formation, as the degree of the “hot-spot” reaction is a positive quasi-linear function of Poisson’s ratio ν. An error in Kim’s original pore collapse model has also been discussed.
Słowa kluczowe
Rocznik
Tom
Strony
806--820
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Laboratory for Shock Wave and Detonation Physics, Mianyang, Sichuan, P. R. China
- Institute of Fluids Physics, China Academy of Engineering Physics, Mianyang, Sichuan, P. R. China
autor
- Laboratory for Shock Wave and Detonation Physics, Mianyang, Sichuan, P. R. China
- Institute of Fluids Physics, China Academy of Engineering Physics, Mianyang, Sichuan, P. R. China
autor
- Institute of Fluids Physics, China Academy of Engineering Physics, Mianyang, Sichuan, P. R. China
Bibliografia
- [1] Lee, E. L.; Tarver, C. M. Phenomenological Model of Shock Initiation in Heterogeneous Explosives. Phys. Fluids 1980, 23(12): 2362-2372.
- [2] Bourne, N. K.; Field, J. E. Explosive Ignition by the Collapse of Cavities. Proc. R. Soc. London, Ser. A 1999, 455 (1987): 2411-2426.
- [3] Heavens, S. N.; Field, J. E. The Ignition of a Thin Layer of Explosive by Impact. Proc. R. Soc. London, Ser A 1974, 338 (1612): 77-93.
- [4] Field, J. E. Hot Spot Ignition Mechanisms for Explosives. Acc. Chem. Res. 1992, 25(11): 489-496.
- [5] Cai, Y.; Zhao, F. P.; An, Q.; Wu, H. A.; Goddard, III W. A.; Luo, S. N. Shock Response of Single Crystal and Nanocrystalline Pentaerythritol Tetranitrate: Implications to Hotspot Formation in Energetic Materials. J. Chem.Phys. 2013, 139(16): 164704.
- [6] Shi, Y. F.; Brenner, D. W. Hotspot Formation in Shock-induced Void Collapse. Solid State Phenomena 2008, 139: 77-82.
- [7] Tong, W.; Ravichandran, G. Dynamic Pore Collapse in Viscoplastic Materials. J. Appl. Phys. 1993, 74(4): 2425-2435.
- [8] Menikoff, R.; Furnish, M. D.; Gupta, Y. M.; Forbes, J. W. Pore Collapse and Hot Spots in HMX. AIP Conf. Proc. 2004, 706: 393-396.
- [9] Carroll, M. M.; Kim, K.; Nesterenko, V. F. The Effect of Temperature on Viscoplastic Pore Collapse. J. Appl. Phys. 1986, 59(6): 1962-1967.
- [10] Hu, L., Hu, S.; Cao, X. Study on the Initiation Capacities of two Booster Pellets. Cent. Eur. J. Energ. Mater. 2012, 9(3): 261-272.
- [11] Bourne, N. On the Collapse of Cavities. Shock Waves 2002, 11(6): 447-455.
- [12] Field, J. E.; Swallowe, G. M.; Heavens, S. N. Ignition Mechanisms of Explosives During Mechanical Deformation. Proc. R. Soc. London, Ser. A 1982, 382 (1782): 231-244.
- [13] Tran, L.; Udaykumar, H. S. Simulation of Void Collapse in an Energetic Material. Part 2: Reactive Case. J. Propul. Power 2006, 22(5): 959-974.
- [14] Austin, R.; Barton, N.; Howard, W.; Fried, L. Modeling Pore Collapse and Chemical Reactions in Shock-loaded HMX Crystals. J. Phys.: Conf. Ser. 2014, 500: 052002.
- [15] Mowar, S.; Zaman, M.; Stearns, D.; Roegiers, J. C. Micro-mechanisms of Pore Collapse in Limestone. J. Pet. Sci. Eng. 1996, 15(2-4): 221-235.
- [16] Tang, Z. P.; Liu, W.; Horie, Y.; Furnish, M. D.; Chhabildas, L. C.; Hixson, R. S. Numerical Investigation of Pore Collapse under Dynamic Compression. AIP Conf. Proc. 2000, 505(1): 309-312.
- [17] Liu, W.; Tang, Z. P.; Horie, Y. Numerical Investigation of Pore Collapse under Dynamic and Quasi-static Compression. APS Shock Compression of Condensed Matter Meeting Abstracts 1999.
- [18] Barton, N. R.; Winter, N. W.; Reaugh, J. E. Defect Evolution and Pore Collapse in Crystalline Energetic Materials. Modell. Simul. Mater. Sci. Eng. 2009, 17(3): 035003.
- [19] Tang, Z. P.; Liu, W. Y. Dynamic Multi-pore Collapse Response with Discrete Meso-element Method. Theor. Appl. Fract. Mech. 2001, 35(1): 39-45.
- [20] Carroll, M. M.; Holt, A. C. Static and Dynamic Pore-Collapse Relations for Ductile Porous Materials. J. Appl. Phys. 1972, 43(4): 1626-1636.
- [21] Kim, K.; Sohn, C. H. Modeling of Reaction Buildup Processes in Shocked Porous Explosives. 8th Symp. (Int.) Detonation 1985, 926-934.
- [22] Kim, K. An Approach to Build a Reaction Rate Model in Shocked Heterogeneous Explosives. JANNAF Propulsion Systems Hazards Subcommittee Proceedings 1986, 1: 513-521.
- [23] Kim, K. Particle Size Dependent Reaction Rate in Shocked Explosives. Shock Waves in Condensed Matter 1987, 531-534.
- [24] Whitworth, N.; Furnish, M. D.; Thadhani, N. N.; Horie, Y. Development of a Simple Model of “Hot-Spot” Initiation in Heterogeneous Solid Explosives. AIP Conf. Proc. 2002, 620: 991-994.
- [25] Massoni, J.; Saurel, R.; Baudin, G.; Demol, G. A Mechanistic Model for Shock Initiation of Solid Explosives. Phys. Fluids 1999, 11(3): 710-736.
- [26] Kang, J.; Butler, P. B.; Baer, M. R. A Thermomechanical Analysis of Hot Spot Formation in Condensed-phase, Energetic Materials. Combust. Flame 1992, 89(2): 117-139.
- [27] Wen, L. J.; Duan, Z. P.; Zhang, Z. Y.; Ou, Z. C.; Huang, F. L.; An Elastic/Viscoplastic Pore Collapse Model of Double-layered Hollow Sphere for Hot-spot Ignition in Shocked Explosives. Chinese Journal of High Pressure Physics (in Chinese), 2011, 25(6): 493-500.
- [28] Marsh, S. P. LASL Shock Hugoniot Data. Vol. 5, Univ. of California Press, 1980.
- [29] Milne, A. M.; Bourne, N. K.; Millett, J. C. F. On the Unreacted Hugoniots of Three Plastic Bonded Explosives. AIP Conf. Proc. 2006, 845(1): 175-178.
- [30] Li, X. H,: Liu, J. A Research of the Inertial Effect on the “Hot-spots” Formation. IFP Internal Report No. 01/LXJY, 2017.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaf79e25-1613-4e47-8b0a-2bd50eda8052