PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of dynamics of the swash plate-slippers-piston assembly on friction torques in bearings in compressor of cooling aggregate

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The swash plate type compressor utilized in car air conditioning devices and cooling system was analyzed in this study. Proper dynamic behavior of the components in such a compressor affected the correct functioning of the whole system. The aim of the study was to identify the characteristics of the main motion components in the swash plate-slippers-piston assembly of the compressor and to estimate the friction torques in its bearings. Some models of this assembly are elaborated and presented in the paper. The main components of slipper complex motion were identified, such as reciprocal motion along the axis of piston, rotation around piston axis, and short-time rotation around its own axis. Friction torque in axial bearing was higher than in journal bearing and varied with the rotational angle. Friction torques in journal bearings varied with the rotational angle and had different courses for two bearings of the compressor.
Rocznik
Strony
42--55
Opis fizyczny
Bibliogr. 31 poz., il. kolor., fot., rys., wykr.
Twórcy
  • Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland
  • Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland
  • Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland
Bibliografia
  • [1] www.toyota-industries.com/company/business/automobile/compressor/kind_1/.
  • [2] Tyczewski, P. 2011 Analysis of Reason of Damage Refrigeration Compressors, Logistyka, vol. 3, pp. 2871-2875.
  • [3] Gorny K., Tyczewski P., Zwierzycki W. 2010 Characteristics of stands for wear tests of materials for refrigeration compressors elements, Tribologia, vol. 3, pp. 75-84.
  • [4] Gorny K., Tyczewski P., Zwierzycki W. 2010 The Estimation of the Influence of Mixture Compressor Oils and Refrigerants on the Durability of Nodes of Friction in Cooling Compressors, Tribologia, vol. 4, pp. 117-128.
  • [5] Latas, W., Stojek, J., Dynamic Model of Axial Piston Swash- Plate Pump for Diagnostics of Wear in Elements, The Archive of Mechanical Engineering, vol. 57, No 2, 2011, 135-155, doi: 10.2478/v10180-011-0010-x.
  • [6] Chen, H.X., Patrick, S.K. Chua, Lim G.H., Dynamic vibration analysis of a swash-plate type water hydraulic motor. Mechanism and Machine Theory, vol. 41, Issue 5, 2006, pp. 487-504.
  • [7] Nishimura, T., Umeda, T., Tsuta, T., Fujimara, M., Kamakami, M., Dynamic response analysis of a swash-plate type hydraulic piston pump. ASME, 1995, pp. 145-155.
  • [8] Vacca, A., Klop, R., Ivantysynova, M., A numerical approach for the evaluation of effects of air release and vapour cavitation on effective flow rate of axial piston machines. International Journal of Fluid Power, No 1, 2010, pp. 33-45.
  • [9] Latas, W., Stojek, J., Dynamic Model of Axial Piston Swash-Plate Pump for Diagnostics of Wear in Elements, The Archive of Mechanical Engineering, vol. 57, No 2, 2011, 135-155.
  • [10] Lee, G.H., Lee, T.J., A Study on the Variable Displacement Mechanism of Swash Plate Type Compressor for Automotive Air Conditioning System, 2004, International Compressor Engineering Conference at Purdue, Paper 1706, https://docs.lib.purdue.edu/ icec/1706.
  • [11] Stulgies, N., Gräber, M., Tegethoff, W., Försterling, S., Evaluation of Different Compressor Control Concepts for a Swash Plate Compressor, Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009, pp. 299-303.
  • [12] Changqing Tian, Yunfei Liao, Xianting Li, A mathematical model of variable displacement swash plate compressor for automotive air conditioning system, International Journal of Refrigeration, 2006, vol. 29, issue 2, pp. 270-280.
  • [13] Zhang, Y., Wang, W., Using overflow in a swash plate compressor for automotive air conditioning system, 2012, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 226, issue 4, pp. 564-579.
  • [14] Mobley, R.K., Fluid Power Dynamics. Chapter 3 Hydraulic Pumps, 2000, pp. 25-46.
  • [15] Zloto, T., Stryjewski, P., Load of the kinematic pair piston-cylinder block in an axial piston pump, TEKA. Commission of Motorization and Energetics in Agriculture - 2012, Vol. 12, No. 2, 291-296.
  • [16] Borghi, M., Zardin, B., Specchia, E., Pintore, F., Corradini, E., (2011). Displacement Control In Variable Displacement Axial Piston Swashplate Type Pumps, Proceeding of the Twelfth Scandinavian International Conference on Fluid Power, SICFP’11 Tampere, Finland, Vol. 3.
  • [17] Kassem, S.A., Bahr, M.K., Effect of Port Plate Silencing Grooves on Performance of Swash Plate Axial Piston Pumps, Current Advances in Mechanical Design and Production VII, Proceedings of the Seventh Cairo University International MDP Conference Cairo-Egypt, February 15-17 2000, pp. 139-148.
  • [18] Wang, S., Tomovic, M., Liu, H., Commercial Aircraft Hydraulic Systems, Chapter 2 - Aircraft Hydraulic Systems, Shanghai Jiao Tong University Press Aerospace Series, Aerospace Engineering, 2016, pp. 53-114.
  • [19] Filipi, Z., Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, Chapter 16 Hydraulic and pneumatic hybrid powertrains for improved fuel economy in vehicles, Chapter 16.3.1 Hydraulic pump/motors, 2014.
  • [20] Pourmovahed, A., Beachley, N.H., Fronczak, F.J., Modelling of a hydraulic energy regeneration system. Part I. Analytical treatment, Transactions of the ASME: J. Dynamic Systems, Measurement and Control, 114: 155-159 (1992).
  • [21] Kim, JH., Jeon, CS. & Hong, YS. Constant pressure control of a swash plate type axial piston pump by varying both volumetric displacement and shaft speed, Int. J. Precis. Eng. Manuf. (2015) 16: 2395.
  • [22] Huang, J., Yan, Z., Quan, L., Lan, Y., & Gao, Y. (2015). Characteristics of delivery pressure in the axial piston pump with combination of variable displacement and variable speed. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 229(7), 599-613.
  • [23] Srivastava, P., Sharma, K., and Jha, R., Modeling of Fixed Displacement Swash Plate Compressor: A Mathematical Approach towards Calculation of Shaft Torque and Volumetric Eflciency, SAE Technical Paper 2016-28-0172, 2016.
  • [24] Woźniak M., Batory D., Siczek K., ANALYSIS FOR THE CASE OF DAMAGE TO THE COOLING AGGREGATE IN VEHICLE WITH COLD STORAGE CHAMBER, Journal of KONES Powertrain and Transport, Vol. 25, No. 1 2018, pp. 475-82.
  • [25] Xu, B., Hu, M., Zhang, J-H, Su Q., Characteristics of volumetric losses and eflciency of axial piston pump with respect to displacement conditions, J Zhejiang Univ-Sci A (Appl Phys & Eng) 2016 17(3):186-201.
  • [26] Flores, P., and Lankarani, H.M., Spatial rigid-multi-body systems with lubricated spherical clearance joints: modeling and simulation, Nonlinear Dynamics 60, 1-2 (2009) 99-114.
  • [27] Pinkus, O., Sternlicht, S.A.: Theory of Hydrodynamic Lubrication, McGraw Hill, New York, (1961).
  • [28] Radulescu, A.V., Radulescu, I., Analysis of squeeze film process between non-parallel circular surfaces, 13th International Conference on Tribology, ROTRIB’16, IOP Conf. Series:Materials Science and Engineering 174 (2017) 012038.
  • [29] Nafln, R.K., Chang, L., An Analytical Model for the Basic Design Calculations of Journal Bearings, Journal of Tribology, APRIL 2010, Vol. 132 / 024503-3.
  • [30] https://medias.schaeffler.com/medias/en!hp.tg.cat/tg_hr*ST4_18687224075#ST4_20922158859.
  • [31] https://www.timken.com/wp-content/uploads/2018/10/Timken-Thrust-Bearing-Catalog_10765.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaf6fcd6-1583-4f68-bf18-783c813a0378
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.