PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cut size determination of centrifugal classifier with fluidized bed

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wyznaczanie ziarna granicznego klasyfikatora odśrodkowego z warstwą fluidalną
Języki publikacji
EN
Abstrakty
EN
The cut size determination on the basis of proposed matrix model of classification process in a centrifugal air flow classifier with a fluidized bed is presented using matrix model. The presented methodology of cut size determination is based on the precise measurement of the total mass of fed material and coarse product in experimental tests. Knowledge of the feed particle size distribution is also required. Considered classifier is a part of the fluidized bed jet mill. The presented cut size determination will allow to optimize mill work and prediction of particle size distribution of the classification products.
PL
W artykule przedstawiono metodykę wyznaczania rozmiaru ziarna granicznego procesu klasyfikacji w odśrodkowym klasyfikatorze przepływowym z warstwą fluidalną przy wykorzystaniu modelu macierzowego. Przedstawiona metodyka oparta jest na dokładnym wyznaczeniu masy nadawy i gruboziarnistego produktu klasyfikacji na podstawie badań eksperymentalnych. Wymagana jest także znajomość składu ziarnowego nadawy. Rozpatrywany klasyfikator stanowi część fluidalnego młyna strumieniowego. Wyznaczenie rozmiaru ziarna granicznego umożliwia przeprowadzenie optymalizacji pracy młyna i prognozowanie składu ziarnowego produktów klasyfikacji.
Rocznik
Strony
823--841
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Czestochowa University of Technology, Institute of Thermal Machinery, Armii Krajowej 21 Ave., 42-201 Częstochowa, Poland
Bibliografia
  • Allen T., 1997. Particle size measurement. Chapman and Hall, London.
  • Austin L.G., Klimpel R.R., 1981. An improved method for analyzing classifier data. Powder Technology 29, 277-281.
  • Bauder A., Müller F., Polke R., 2004. Investigations concerning the separation mechanism in deflector wheel classifiers. International Journal of Mineral Processing 74S, S147-S154.
  • Benović T., Miljanović I., Vujić S., 2012. Fuzzy model of autogenous suspension coal cleaning. Arch. Min. Sci., Vol. 57, No. 4, p. 843-860.
  • Benzer H., 2005. Modeling and simulation of a fully air swept ball mill in a raw material grinding circuit. Powder Technology 150, 145-154.
  • Bozhenko B., Junga R., Pospolita J., 2011. Mathematical model of the milling process on the ring-roller’s table. Part 1. Mathematic model and it’s numeric solution. Arch. Min. Sci., Vol. 56, No. 3, p. 441-450.
  • Brożek M., Surowiak A., 2010. Argument of separation at upgrading in the jig. Arch. Min. Sci., Vol. 55, No. 1, p. 21-40.
  • Dijkink B.H., Speranza L., Paltsidis D., Vereijken J.M., 2007. Air dispersion of starch-protein mixtures: A predictivetool for air classification performance. Powder Technology 172, 113-119.
  • Eswaraiah C., Angadi S.I., Mishra B.K., 2012. Mechanism of particle separation and analysis of fish-hook phenomenonin a circulating air classifier. Powder Technology 218, 57-63.
  • Feng Y., Liu J., Liu S., 2008. Effects of operating parameters on flow field in a turbo air classifier. Minerals Engineering 21, 598-604.
  • Heinrich S., Peglow M., Ihlow M., Mörl L., 2003. Particle population modeling in fluidized bed-spray granulation -analysis of the steady state and unsteady behavior. Powder Technology, 130, 154-161.
  • Huang Q., Liu J., Yu Y., 2012. Turbo air classifier guide vane improvement and inner flow field numerical simulation. Powder Technology 226, 10-15.
  • Johansson R., Evertsson M., 2012. An empirical study of a gravitational air classifier. Minerals Engineering 31, 10-16.
  • Johansson R., Evertsson M., 2012a. CFD simulation of a gravitational air classifier. Minerals Engineering 33, 20-26.
  • Kaniowski P., 2012. Research and modeling of particles classification process in a flow centrifugal classifier (in Polish). PhD Thesis, Czestochowa University of Technology.
  • Kijo-Kleczkowska A. 2012. Research on coal-water fuel combustion in a circulating fluidized bed. Arch. Min. Sci., Vol. 57, No. 1, p. 79-92.
  • King R.P., 2001. Modeling and simulation of mineral processing systems. Butterworth-Heinemann, Oxford.
  • Kis P.B., Mihálykó C., Lakatos B.G., 2006. Discrete model for analysis and design of grinding mill-classifier systems. Chemical Engineering and Processing 45, 340-349.
  • Lanzerstorfer C., 2011. Model based prediction of required cut size diameter for fractionation of fly ash from a gratefiredwood chip incineration plant. Fuel Processing Technology 92, 1095-1100.
  • Leschonski K., 1984. Particle characterisation 1. Verlag Chemie, Weinheim, 89-95.
  • Mizonov V.E., Ushakov S.G., 1989. Aerodynamic classification of powders (in Russian). Khimiya, Moskva.
  • Mizonov V., Zhukov V., Korovkin A., Berthiaux H. 2005. On possible instability of throughputs in complex millingcircuits. Chemical Engineering and Processing, 44, 267-272.
  • Mochalov S.P., Rybenko I.A., Mochalov P.S., Kalashnikov S.N., 2012. Dynamic combustion of suspended coal-waterfuel from enrichment wastes in a turbulent furnace. Steel in Translation 42, 611-613.
  • Mohanta S., Mishra B.K., 2009. On the adequacy of distribution curves used in coal cleaning - A statistical analysis. Fuel 88, 2262-2268.
  • Molerus O., 1966. Über die Axialvermischung bei Transportprozessen in kontinuierlich betriebenen Apparaturen. Chemie Ingenieur Technik 38, 137-145.
  • Molerus O., 1967. Stochastisches Modell der Gleichgewichtssichtung. Chemie Ingenieur Technik 39, 792-796.
  • Morimoto H., Shakouchi T., 2003. Classification of ultra fine powder by a new pneumatic type classifier. Powder Technology 131, 71-79.
  • Napier-Munn T.J., 1991. Modelling and simulating dense medium separation processes - A Progress Report. Minerals Engineering, 4, 329-346.
  • Otwinowski H., Kaniowski P., Urbaniak D., 2011: Experimental identification of a matrix model of classification process. Thermodynamics in Science and Technology, Scientific Papers of Poznań University of Technology, Poznań, part 1, 165-172 (1st International Congress on Thermodynamics ICT 2011).
  • Palaniandy S., Azizli K.A.M., 2009. Mechanochemical effects on talc during fine grinding process in a jet mill. International Journal of Mineral Processing 92, 22-33.
  • Plitt L.R., 1971. The analysis of solid-solid separations in classifier. Canadian Institute of Mining Metallurgy and Petroleum CIM Bulletin 64 (708), 42-47.
  • Pyka I., Wierzchowski K., 2012. Characterisation method for population of mineral particles for flow processes and theassessment of its application potential. International Journal of Mineral Processing 110-111, 126-134.
  • Rumpf H., 1990. Particle technology. Chapman and Hall, London.
  • Schmidt J., Werther J., 2006. Simulation and optimization of a centrifugal fluidized bed classifier in the micrometerrange. Chemical Engineering and Processing 45, 488-499.
  • Shapiro M., Galperin V., 2005. Air classification of solid particles: a review. Chemical Engineering and Processing 44, 279-285.
  • Tromp K.F., 1937. New method of computing the washability of coals. Glückauf 37, 125-131, 151-156. Excerpts in Tromp K.F. 1937. New methods of computing the washability of coals. Colliery Guardian 154, 955-959, 1009.
  • Venkoba Rao B., 2005. Analytical expressions for classifier product size distributions. Minerals Engineering 18, 557-560.
  • Venkoba Rao B., Kapur P.C., Konnur R., 2003. Modeling the size-density partition surface of dense-medium separators. International Journal of Mineral Processing 72, 443-453.
  • Wang X., Ge X., Zhao X., Wang Z., 1999. Study on horizontal turbine classification. Powder Technology 102, 166-170.
  • Wills B.A., Napier-Munn T.J., 2006. Will’s mineral processing technology. Butterworth-Heinemann, Musselburgh.
  • Zhukov V.P., Otwinowski H., Smirnov S.F., Kaniowski P., 2009: Analytical and experimental investigations of processesin the fluidized bed jet mill (in Russian). Vestnik ISPEU 4, 74-77.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaf69298-fe53-48aa-8f86-818e22765b70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.