
JACSM 2016, Vol. 8, No. 1, pp. 69 -

69

MONADIC PRINTING REVISITED

Konrad Grzanek

IT Institute, University of Social Sciences

9 Sienkiewicza St., 90-113 Łódź, Poland

kgrzanek@spoleczna.pl

Abstract

Expressive and clear implementation of monadic printing requires an amount of

work to define and design proper abstractions to rely upon when performing the

actual programming works. Our previous realization of tree printing library left us

with a sense of lack with respect to these considerations. This is why we decided

to re-design and re-implement the library with core algorithms based upon new, ef-

fective and expressive text printing and concatenation routines. This paper presents

the results of our work.

Keywords: Functional programming, monads, Haskell, polymorphism

1 Introduction

Textual presentation of data structures is invariably one of the most effective ways to

visualize them, especially when it comes to presentation of large data structures. The

ability to display textual content and working on the presentation results with automated

text-processing tools sometimes makes this way of visualizing much more appealing to

the end-user than displaying using GUI views. The data structure that is especially

susceptible to this approach is tree, or – even more generally – DAG (Directed Acyclic

Graph).

Our previous work on this subject aimed towards creating a library for visualizing

trees and DAGs. Our few years old paper [5] presented a library for Haskell [1, 2], the

purely functional and statically typed programming language. The library described

there possessed the following properties:

– The ability to generate representations of arbitrary DAGs.

– Writing to any monad including IO. This also means it was capable of writing to

normal Haskel Strings (lists of Char) via Identity monad.

– Extensive use of Haskell type-system to verify correctness of the usage scenarios.

79
10.1515/jacsm-2016-0005

Unauthenticated
Download Date | 5/14/18 12:29 PM

70

 Monadic Printing Revisited ...

Unfortunately, the design and implementation of this library was not perfect. It

missed expressiveness and the clarity of algorithm formulation. These issues led to

extensive re-design of the library. The updated architecture of the library consists of:

– Printing abstraction,

– String/Text concatenation routines,

– Re-designed tree printing implemented on top of the two previous ones.

This paper is an attempt to present all the details of the refreshed library.

2 Printing Abstraction and Its Implementations

Generic printing mechanisms are defined in Kask.Print module [6]. All its contents are

defined in the presence of the following import clauses:

import qualified Control.Monad.State.Strict as S

import Data.Monoid ((<>))
import qualified Data.Text as T

import qualified Data.Text.IO as TIO

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Data.Text.Lazy.IO as TLIO

import Prelude hiding (print)

The most essential abstraction is a type-class called Printable. It is parameterized by

two type-arguments out of which the first one, m, is a monad [4].

We have two procedures defined here, namely print and printLn. They both return

a unit-type in the monad m. The printLn works exactly like print, but it adds a newline

character to the end of the printed entity of type p:

class Monad m ⇒ Printable m p where

print :: p → m ()
printLn :: p → m ()

2.1 IO Monad

The Printable type-class is implemented within the IO monad for a collection of textual

data-types, like String, ShowS, and Text, either lazily and eagerly evaluated. See the

listing below:

instance Printable IO String where

print = putStr

printLn = putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO ShowS where

Unfortunately, the design and implementation of this library was not perfect. It

missed expressiveness and the clarity of algorithm formulation. These issues led to

extensive re-design of the library. The updated architecture of the library consists of:

– Printing abstraction,

– String/Text concatenation routines,

– Re-designed tree printing implemented on top of the two previous ones.

This paper is an attempt to present all the details of the refreshed library.

2 Printing Abstraction and Its Implementations

Generic printing mechanisms are defined in Kask.Print module [6]. All its contents are

defined in the presence of the following import clauses:

import qualified Control.Monad.State.Strict as S

import Data.Monoid ((<>))
import qualified Data.Text as T

import qualified Data.Text.IO as TIO

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Data.Text.Lazy.IO as TLIO

import Prelude hiding (print)

The most essential abstraction is a type-class called Printable. It is parameterized by

two type-arguments out of which the first one, m, is a monad [4].

We have two procedures defined here, namely print and printLn. They both return

a unit-type in the monad m. The printLn works exactly like print, but it adds a newline

character to the end of the printed entity of type p:

class Monad m ⇒ Printable m p where

print :: p → m ()
printLn :: p → m ()

2.1 IO Monad

The Printable type-class is implemented within the IO monad for a collection of textual

data-types, like String, ShowS, and Text, either lazily and eagerly evaluated. See the

listing below:

instance Printable IO String where

print = putStr

printLn = putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO ShowS where

Unauthenticated
Download Date | 5/14/18 12:29 PM

71

Grzanek K.

Unfortunately, the design and implementation of this library was not perfect. It

missed expressiveness and the clarity of algorithm formulation. These issues led to

extensive re-design of the library. The updated architecture of the library consists of:

– Printing abstraction,

– String/Text concatenation routines,

– Re-designed tree printing implemented on top of the two previous ones.

This paper is an attempt to present all the details of the refreshed library.

2 Printing Abstraction and Its Implementations

Generic printing mechanisms are defined in Kask.Print module [6]. All its contents are

defined in the presence of the following import clauses:

import qualified Control.Monad.State.Strict as S

import Data.Monoid ((<>))
import qualified Data.Text as T

import qualified Data.Text.IO as TIO

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Data.Text.Lazy.IO as TLIO

import Prelude hiding (print)

The most essential abstraction is a type-class called Printable. It is parameterized by

two type-arguments out of which the first one, m, is a monad [4].

We have two procedures defined here, namely print and printLn. They both return

a unit-type in the monad m. The printLn works exactly like print, but it adds a newline

character to the end of the printed entity of type p:

class Monad m ⇒ Printable m p where

print :: p → m ()
printLn :: p → m ()

2.1 IO Monad

The Printable type-class is implemented within the IO monad for a collection of textual

data-types, like String, ShowS, and Text, either lazily and eagerly evaluated. See the

listing below:

instance Printable IO String where

print = putStr

printLn = putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO ShowS where

print = print ◦ evalShowS

printLn = putStrLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO T.Text where

print = TIO.putStr

printLn = TIO.putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO TL.Text where

print = TLIO.putStr

printLn = TLIO.putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide an IO-monadic implementation for an effective textual builder defined

in Data.Text.Lazy.Builder, like:

instance Printable IO TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.2 Text in the State Monad

Another interesting monad to mention here is the state monad, as defined in Con-

trol.Monad.State.Stric. We define a special type TextBuilder to wrap the textual state

management within an useful text-coercible abstraction:

type TextBuilder = S.State T.Text

toText :: TextBuilder ()→ T.Text

toText tb = snd (S.runState tb "")
{-# INLINE toText #-}

The TextBuilder monad has the following Printable implementations for String and

ShowS:

instance Printable TextBuilder String where

print = print ◦T.pack

printLn = printLn◦T.pack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable TextBuilder ShowS where

Unfortunately, the design and implementation of this library was not perfect. It

missed expressiveness and the clarity of algorithm formulation. These issues led to

extensive re-design of the library. The updated architecture of the library consists of:

– Printing abstraction,

– String/Text concatenation routines,

– Re-designed tree printing implemented on top of the two previous ones.

This paper is an attempt to present all the details of the refreshed library.

2 Printing Abstraction and Its Implementations

Generic printing mechanisms are defined in Kask.Print module [6]. All its contents are

defined in the presence of the following import clauses:

import qualified Control.Monad.State.Strict as S

import Data.Monoid ((<>))
import qualified Data.Text as T

import qualified Data.Text.IO as TIO

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Data.Text.Lazy.IO as TLIO

import Prelude hiding (print)

The most essential abstraction is a type-class called Printable. It is parameterized by

two type-arguments out of which the first one, m, is a monad [4].

We have two procedures defined here, namely print and printLn. They both return

a unit-type in the monad m. The printLn works exactly like print, but it adds a newline

character to the end of the printed entity of type p:

class Monad m ⇒ Printable m p where

print :: p → m ()
printLn :: p → m ()

2.1 IO Monad

The Printable type-class is implemented within the IO monad for a collection of textual

data-types, like String, ShowS, and Text, either lazily and eagerly evaluated. See the

listing below:

instance Printable IO String where

print = putStr

printLn = putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO ShowS where

print = print ◦ evalShowS

printLn = putStrLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO T.Text where

print = TIO.putStr

printLn = TIO.putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO TL.Text where

print = TLIO.putStr

printLn = TLIO.putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide an IO-monadic implementation for an effective textual builder defined

in Data.Text.Lazy.Builder, like:

instance Printable IO TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.2 Text in the State Monad

Another interesting monad to mention here is the state monad, as defined in Con-

trol.Monad.State.Stric. We define a special type TextBuilder to wrap the textual state

management within an useful text-coercible abstraction:

type TextBuilder = S.State T.Text

toText :: TextBuilder ()→ T.Text

toText tb = snd (S.runState tb "")
{-# INLINE toText #-}

The TextBuilder monad has the following Printable implementations for String and

ShowS:

instance Printable TextBuilder String where

print = print ◦T.pack

printLn = printLn◦T.pack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable TextBuilder ShowS where

Unauthenticated
Download Date | 5/14/18 12:29 PM

72

 Monadic Printing Revisited ...

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for eagerly, and lazily evaluated Text:

instance Printable TextBuilder T.Text where

print txt = do

buf ← S.get

S.put (T.append buf txt)
{-# INLINE print #-}

printLn txt = do

buf ← S.get

S.put (T.append (T.append buf txt) "\n")
{-# INLINE printLn #-}

instance Printable TextBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide implementation for Data.Text.Lazy.Builder like in the case of IO monad:

instance Printable TextBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.3 Lazy Text Builder in the State Monad

Eagerly evaluated state monad may be also used as a basis for a lazily evaluated string

builder, as defined below, together with two state evaluators:

type LazyTextBuilder = S.State TLB.Builder

toLazyTextBuilder :: LazyTextBuilder ()→ TLB.Builder

toLazyTextBuilder tb = snd $ S.runState tb $ TLB.fromString ""

{-# INLINE toLazyTextBuilder #-}

toLazyText :: LazyTextBuilder ()→ TL.Text

toLazyText = TLB.toLazyText ◦ toLazyTextBuilder

{-# INLINE toLazyText #-}

Like in the case of the previous monadic implementations, firstly we define the imple-

mentations for String and ShowS:

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for eagerly, and lazily evaluated Text:

instance Printable TextBuilder T.Text where

print txt = do

buf ← S.get

S.put (T.append buf txt)
{-# INLINE print #-}

printLn txt = do

buf ← S.get

S.put (T.append (T.append buf txt) "\n")
{-# INLINE printLn #-}

instance Printable TextBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide implementation for Data.Text.Lazy.Builder like in the case of IO monad:

instance Printable TextBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.3 Lazy Text Builder in the State Monad

Eagerly evaluated state monad may be also used as a basis for a lazily evaluated string

builder, as defined below, together with two state evaluators:

type LazyTextBuilder = S.State TLB.Builder

toLazyTextBuilder :: LazyTextBuilder ()→ TLB.Builder

toLazyTextBuilder tb = snd $ S.runState tb $ TLB.fromString ""

{-# INLINE toLazyTextBuilder #-}

toLazyText :: LazyTextBuilder ()→ TL.Text

toLazyText = TLB.toLazyText ◦ toLazyTextBuilder

{-# INLINE toLazyText #-}

Like in the case of the previous monadic implementations, firstly we define the imple-

mentations for String and ShowS:

Unauthenticated
Download Date | 5/14/18 12:29 PM

73

Grzanek K.

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for eagerly, and lazily evaluated Text:

instance Printable TextBuilder T.Text where

print txt = do

buf ← S.get

S.put (T.append buf txt)
{-# INLINE print #-}

printLn txt = do

buf ← S.get

S.put (T.append (T.append buf txt) "\n")
{-# INLINE printLn #-}

instance Printable TextBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide implementation for Data.Text.Lazy.Builder like in the case of IO monad:

instance Printable TextBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.3 Lazy Text Builder in the State Monad

Eagerly evaluated state monad may be also used as a basis for a lazily evaluated string

builder, as defined below, together with two state evaluators:

type LazyTextBuilder = S.State TLB.Builder

toLazyTextBuilder :: LazyTextBuilder ()→ TLB.Builder

toLazyTextBuilder tb = snd $ S.runState tb $ TLB.fromString ""

{-# INLINE toLazyTextBuilder #-}

toLazyText :: LazyTextBuilder ()→ TL.Text

toLazyText = TLB.toLazyText ◦ toLazyTextBuilder

{-# INLINE toLazyText #-}

Like in the case of the previous monadic implementations, firstly we define the imple-

mentations for String and ShowS:

instance Printable LazyTextBuilder String where

print = print ◦T.pack

printLn = printLn◦T.pack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable LazyTextBuilder ShowS where

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for strictly and lazily evaluated Text instances:

instance Printable LazyTextBuilder T.Text where

print = print ◦TLB.fromText

printLn = printLn◦TLB.fromText

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable LazyTextBuilder TL.Text where

print = print ◦TLB.fromLazyText

printLn = printLn◦TLB.fromLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

To make this realization conceptually coherent with the previous ones, we also provide

an implementation for TLB.Builder (as it was presented in the previous sub-sections):

instance Printable LazyTextBuilder TLB.Builder where

print b = do

builder ← S.get

S.put (builder<>b)
{-# INLINE print #-}

printLn b = do

builder ← S.get

S.put (builder<>b<>TLB.fromLazyText "\n")
{-# INLINE printLn #-}

2.4 ShowS in the State Monad

For ShowS type we define a separate State Monad instance, together with the following

evaluators:

type StringBuilder = S.State ShowS

evalShowS :: ShowS → String

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for eagerly, and lazily evaluated Text:

instance Printable TextBuilder T.Text where

print txt = do

buf ← S.get

S.put (T.append buf txt)
{-# INLINE print #-}

printLn txt = do

buf ← S.get

S.put (T.append (T.append buf txt) "\n")
{-# INLINE printLn #-}

instance Printable TextBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide implementation for Data.Text.Lazy.Builder like in the case of IO monad:

instance Printable TextBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.3 Lazy Text Builder in the State Monad

Eagerly evaluated state monad may be also used as a basis for a lazily evaluated string

builder, as defined below, together with two state evaluators:

type LazyTextBuilder = S.State TLB.Builder

toLazyTextBuilder :: LazyTextBuilder ()→ TLB.Builder

toLazyTextBuilder tb = snd $ S.runState tb $ TLB.fromString ""

{-# INLINE toLazyTextBuilder #-}

toLazyText :: LazyTextBuilder ()→ TL.Text

toLazyText = TLB.toLazyText ◦ toLazyTextBuilder

{-# INLINE toLazyText #-}

Like in the case of the previous monadic implementations, firstly we define the imple-

mentations for String and ShowS:

instance Printable LazyTextBuilder String where

print = print ◦T.pack

printLn = printLn◦T.pack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable LazyTextBuilder ShowS where

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for strictly and lazily evaluated Text instances:

instance Printable LazyTextBuilder T.Text where

print = print ◦TLB.fromText

printLn = printLn◦TLB.fromText

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable LazyTextBuilder TL.Text where

print = print ◦TLB.fromLazyText

printLn = printLn◦TLB.fromLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

To make this realization conceptually coherent with the previous ones, we also provide

an implementation for TLB.Builder (as it was presented in the previous sub-sections):

instance Printable LazyTextBuilder TLB.Builder where

print b = do

builder ← S.get

S.put (builder<>b)
{-# INLINE print #-}

printLn b = do

builder ← S.get

S.put (builder<>b<>TLB.fromLazyText "\n")
{-# INLINE printLn #-}

2.4 ShowS in the State Monad

For ShowS type we define a separate State Monad instance, together with the following

evaluators:

type StringBuilder = S.State ShowS

evalShowS :: ShowS → String

Unauthenticated
Download Date | 5/14/18 12:29 PM

74

 Monadic Printing Revisited ...

evalShowS s = s ""

{-# INLINE evalShowS #-}

toShowS :: StringBuilder ()→ ShowS

toShowS tb = snd (S.runState tb (showString ""))
{-# INLINE toShowS #-}

toString :: StringBuilder ()→ String

toString = evalShowS◦ toShowS

{-# INLINE toString #-}

The String and ShowS instances of the Printable type-class raise up in a natural way:

instance Printable StringBuilder String where

print = print ◦ showString

printLn = printLn◦ showString

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder ShowS where

print s = do

buf ← S.get

S.put (buf ◦ s)
{-# INLINE print #-}

printLn s = do

buf ← S.get

S.put (buf ◦ s◦ showString "\n")
{-# INLINE printLn #-}

along with Text instances, like in the following listing:

instance Printable StringBuilder T.Text where

print = print ◦T.unpack

printLn = printLn◦T.unpack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

Unauthenticated
Download Date | 5/14/18 12:29 PM

75

Grzanek K.

evalShowS s = s ""

{-# INLINE evalShowS #-}

toShowS :: StringBuilder ()→ ShowS

toShowS tb = snd (S.runState tb (showString ""))
{-# INLINE toShowS #-}

toString :: StringBuilder ()→ String

toString = evalShowS◦ toShowS

{-# INLINE toString #-}

The String and ShowS instances of the Printable type-class raise up in a natural way:

instance Printable StringBuilder String where

print = print ◦ showString

printLn = printLn◦ showString

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder ShowS where

print s = do

buf ← S.get

S.put (buf ◦ s)
{-# INLINE print #-}

printLn s = do

buf ← S.get

S.put (buf ◦ s◦ showString "\n")
{-# INLINE printLn #-}

along with Text instances, like in the following listing:

instance Printable StringBuilder T.Text where

print = print ◦T.unpack

printLn = printLn◦T.unpack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

3 Compatible Abstraction for Concatenation

Early in the design phase it became apparent that we might use the Printable for string

concatenation. After all the concatenation may be viewed here as printing into the con-

catenating (string/text builder) object. To make things clear we provide the following

StrCat type-class, that is another useful abstraction in our library:

class StrCat c where

strCat :: (Foldable t)⇒ t c → c

Concatenation is being treated as a fold (e.g. see [3]) operation, that’s why we define

the strCat mechanism as taking place inside a Foldable.

Functional merging of StrCat and Printable takes place via the following strCatWith

procedure:

strCatWith :: (Printable m c,Foldable t)⇒ (m ()→ c)→ t c → c

strCatWith f = f ◦mapM print

{-# INLINE strCatWith #-}

This immediately allows us to provide StrCat implementations for String and ShowS:

instance StrCat String where

strCat = strCatWith toString

{-# INLINE strCat #-}

instance StrCat ShowS where

strCat = strCatWith toShowS

{-# INLINE strCat #-}

The same approach applies to Text and TLB.Builder:

instance StrCat T.Text where

strCat = strCatWith toText

{-# INLINE strCat #-}

instance StrCat TL.Text where

strCat = strCatWith toLazyText

{-# INLINE strCat #-}

instance StrCat TLB.Builder where

strCat = strCatWith toLazyTextBuilder

{-# INLINE strCat #-}

4 Re-designed Tree Printing

All abstractions and their implementations described so far allow us to provide an up-

dated realization of tree printing, previously defined and presented in [5]. The new

3 Compatible Abstraction for Concatenation

Early in the design phase it became apparent that we might use the Printable for string

concatenation. After all the concatenation may be viewed here as printing into the con-

catenating (string/text builder) object. To make things clear we provide the following

StrCat type-class, that is another useful abstraction in our library:

class StrCat c where

strCat :: (Foldable t)⇒ t c → c

Concatenation is being treated as a fold (e.g. see [3]) operation, that’s why we define

the strCat mechanism as taking place inside a Foldable.

Functional merging of StrCat and Printable takes place via the following strCatWith

procedure:

strCatWith :: (Printable m c,Foldable t)⇒ (m ()→ c)→ t c → c

strCatWith f = f ◦mapM print

{-# INLINE strCatWith #-}

This immediately allows us to provide StrCat implementations for String and ShowS:

instance StrCat String where

strCat = strCatWith toString

{-# INLINE strCat #-}

instance StrCat ShowS where

strCat = strCatWith toShowS

{-# INLINE strCat #-}

The same approach applies to Text and TLB.Builder:

instance StrCat T.Text where

strCat = strCatWith toText

{-# INLINE strCat #-}

instance StrCat TL.Text where

strCat = strCatWith toLazyText

{-# INLINE strCat #-}

instance StrCat TLB.Builder where

strCat = strCatWith toLazyTextBuilder

{-# INLINE strCat #-}

4 Re-designed Tree Printing

All abstractions and their implementations described so far allow us to provide an up-

dated realization of tree printing, previously defined and presented in [5]. The new

Unauthenticated
Download Date | 5/14/18 12:29 PM

76

 Monadic Printing Revisited ...

realization can be viewed as a whole in Kask.Data.Tree.Print module [7]. In the pres-

ence of the following import clauses:

import Control.Monad (unless, forM)
import Data.Foldable (toList)
import qualified Data.Text as T

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Kask.Constr as C

import Kask.Data.List (markLast)
import qualified Kask.Print as P

import Prelude hiding (Show,show)

we have the basic type definitions like below:

type Adjs a t = Foldable t ⇒ a → t a

type Show a s = Symbolic s ⇒ a → s

type Depth = C.Constr (C.BoundsConstr C.Positive) Int

One additional visible change with respect to mechanisms defined in [5] relates to Depth

- a new data type that describes the maximum depth of tree-printing. Currently it is

a positive integer, with the contract enforced by using Constr and BoundsConstr, an

effective compile-time contract definition routines, also provided by the kask repository.

4.1 Tree Printing API

Essentially it consists of a single procedure printTree with the following signature and

implementation:

printTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Maybe Depth → m ()

printTree node adjacent show maxDepth =
doPrintTree node adjacent show (case maxDepth of

Just d → C.unconstr d−1

Nothing → maxBound)
0 -- initial level is 0-th

[True] -- node has no siblings

True -- .. and it is the first one

4.2 Simplified and More Expressive Tree Printing Implementation

The procedure takes the following form:

doPrintTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Int → Int → [Bool]→ Bool → m ()

realization can be viewed as a whole in Kask.Data.Tree.Print module [7]. In the pres-

ence of the following import clauses:

import Control.Monad (unless, forM)
import Data.Foldable (toList)
import qualified Data.Text as T

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Kask.Constr as C

import Kask.Data.List (markLast)
import qualified Kask.Print as P

import Prelude hiding (Show,show)

we have the basic type definitions like below:

type Adjs a t = Foldable t ⇒ a → t a

type Show a s = Symbolic s ⇒ a → s

type Depth = C.Constr (C.BoundsConstr C.Positive) Int

One additional visible change with respect to mechanisms defined in [5] relates to Depth

- a new data type that describes the maximum depth of tree-printing. Currently it is

a positive integer, with the contract enforced by using Constr and BoundsConstr, an

effective compile-time contract definition routines, also provided by the kask repository.

4.1 Tree Printing API

Essentially it consists of a single procedure printTree with the following signature and

implementation:

printTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Maybe Depth → m ()

printTree node adjacent show maxDepth =
doPrintTree node adjacent show (case maxDepth of

Just d → C.unconstr d−1

Nothing → maxBound)
0 -- initial level is 0-th

[True] -- node has no siblings

True -- .. and it is the first one

4.2 Simplified and More Expressive Tree Printing Implementation

The procedure takes the following form:

doPrintTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Int → Int → [Bool]→ Bool → m ()

Unauthenticated
Download Date | 5/14/18 12:29 PM

77

Grzanek K.

realization can be viewed as a whole in Kask.Data.Tree.Print module [7]. In the pres-

ence of the following import clauses:

import Control.Monad (unless, forM)
import Data.Foldable (toList)
import qualified Data.Text as T

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Kask.Constr as C

import Kask.Data.List (markLast)
import qualified Kask.Print as P

import Prelude hiding (Show,show)

we have the basic type definitions like below:

type Adjs a t = Foldable t ⇒ a → t a

type Show a s = Symbolic s ⇒ a → s

type Depth = C.Constr (C.BoundsConstr C.Positive) Int

One additional visible change with respect to mechanisms defined in [5] relates to Depth

- a new data type that describes the maximum depth of tree-printing. Currently it is

a positive integer, with the contract enforced by using Constr and BoundsConstr, an

effective compile-time contract definition routines, also provided by the kask repository.

4.1 Tree Printing API

Essentially it consists of a single procedure printTree with the following signature and

implementation:

printTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Maybe Depth → m ()

printTree node adjacent show maxDepth =
doPrintTree node adjacent show (case maxDepth of

Just d → C.unconstr d−1

Nothing → maxBound)
0 -- initial level is 0-th

[True] -- node has no siblings

True -- .. and it is the first one

4.2 Simplified and More Expressive Tree Printing Implementation

The procedure takes the following form:

doPrintTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Int → Int → [Bool]→ Bool → m ()

doPrintTree node adjacent show maxDepth level

lastChildMarks isFirst = do

let s = show node

pfx = if isFirst then empty else eol

repr = if level ≡ 0

then P.strCat [pfx,s]
else P.strCat [pfx,genIndent lastChildMarks,s]

P.print repr

unless (level ≡ maxDepth)$ do

let children = toList $ adjacent node

forM (zip children (markLast children))$ λ (child, isLast)→
doPrintTree child adjacent show maxDepth (level+1)
(isLast : lastChildMarks) False

All the printing, concatenation and string-building abstractions allowed us to achieve

two goals:

1. Make the implementation clear and obvious.

2. Make the API expressive.

The clarification seems apparent here, and the expressiveness enhancement takes place

thanks to powerful compile time abstractions provided in the signature: Printable, Fold-

able, Adjs, Show.

4.3 Further Implementation Details

String concatenation abstraction is also used to implement properly the indentation used

to layout the printed tree:

genIndent :: Symbolic s ⇒ [Bool]→ s

genIndent [] = empty -- should not happen anyway

genIndent (isLast : lastChildMarks) = P.strCat [prefix,suffix]
where

indentSymbol True = emptyIndent

indentSymbol False = indent

suffix = if isLast then forLastChild else forChild

prefix = P.strCat $ fmap indentSymbol $ reverse $ init lastChildMarks

Additionally we use a Symbolic type class that holds the information about all textual

elements forming the tree printing layout. The abstraction is defined as:

class P.StrCat s ⇒ Symbolic s where

indent :: s

emptyIndent :: s

forChild :: s

forLastChild :: s

eol :: s

empty :: s

realization can be viewed as a whole in Kask.Data.Tree.Print module [7]. In the pres-

ence of the following import clauses:

import Control.Monad (unless, forM)
import Data.Foldable (toList)
import qualified Data.Text as T

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Kask.Constr as C

import Kask.Data.List (markLast)
import qualified Kask.Print as P

import Prelude hiding (Show,show)

we have the basic type definitions like below:

type Adjs a t = Foldable t ⇒ a → t a

type Show a s = Symbolic s ⇒ a → s

type Depth = C.Constr (C.BoundsConstr C.Positive) Int

One additional visible change with respect to mechanisms defined in [5] relates to Depth

- a new data type that describes the maximum depth of tree-printing. Currently it is

a positive integer, with the contract enforced by using Constr and BoundsConstr, an

effective compile-time contract definition routines, also provided by the kask repository.

4.1 Tree Printing API

Essentially it consists of a single procedure printTree with the following signature and

implementation:

printTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Maybe Depth → m ()

printTree node adjacent show maxDepth =
doPrintTree node adjacent show (case maxDepth of

Just d → C.unconstr d−1

Nothing → maxBound)
0 -- initial level is 0-th

[True] -- node has no siblings

True -- .. and it is the first one

4.2 Simplified and More Expressive Tree Printing Implementation

The procedure takes the following form:

doPrintTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Int → Int → [Bool]→ Bool → m ()

Unauthenticated
Download Date | 5/14/18 12:29 PM

78

 Monadic Printing Revisited ...

with the following realization for String and ShowS:

instance Symbolic String where

indent = " "

emptyIndent = " "

forChild = " "

forLastChild = " "

eol = "\n"

empty = ""

instance Symbolic ShowS where

indent = showString (indent :: String)
emptyIndent = showString (emptyIndent :: String)
forChild = showString (forChild :: String)
forLastChild = showString (forLastChild :: String)
eol = showString (eol :: String)
empty = showString (empty :: String)

Finally, we also provide an implementation for Text:

instance Symbolic T.Text where

indent = T.pack (indent :: String)
emptyIndent = T.pack (emptyIndent :: String)
forChild = T.pack (forChild :: String)
forLastChild = T.pack (forLastChild :: String)
eol = T.pack (eol :: String)
empty = T.pack (empty :: String)

instance Symbolic TL.Text where

indent = TL.pack (indent :: String)
emptyIndent = TL.pack (emptyIndent :: String)
forChild = TL.pack (forChild :: String)
forLastChild = TL.pack (forLastChild :: String)
eol = TL.pack (eol :: String)
empty = TL.pack (empty :: String)

and for TLB.Builder:

instance Symbolic TLB.Builder where

indent = TLB.fromText (indent :: T.Text)
emptyIndent = TLB.fromText (emptyIndent :: T.Text)
forChild = TLB.fromText (forChild :: T.Text)
forLastChild = TLB.fromText (forLastChild :: T.Text)
eol = TLB.fromText (eol :: T.Text)
empty = TLB.fromText (empty :: T.Text)

Unauthenticated
Download Date | 5/14/18 12:29 PM

79

Grzanek K.

with the following realization for String and ShowS:

instance Symbolic String where

indent = " "

emptyIndent = " "

forChild = " "

forLastChild = " "

eol = "\n"

empty = ""

instance Symbolic ShowS where

indent = showString (indent :: String)
emptyIndent = showString (emptyIndent :: String)
forChild = showString (forChild :: String)
forLastChild = showString (forLastChild :: String)
eol = showString (eol :: String)
empty = showString (empty :: String)

Finally, we also provide an implementation for Text:

instance Symbolic T.Text where

indent = T.pack (indent :: String)
emptyIndent = T.pack (emptyIndent :: String)
forChild = T.pack (forChild :: String)
forLastChild = T.pack (forLastChild :: String)
eol = T.pack (eol :: String)
empty = T.pack (empty :: String)

instance Symbolic TL.Text where

indent = TL.pack (indent :: String)
emptyIndent = TL.pack (emptyIndent :: String)
forChild = TL.pack (forChild :: String)
forLastChild = TL.pack (forLastChild :: String)
eol = TL.pack (eol :: String)
empty = TL.pack (empty :: String)

and for TLB.Builder:

instance Symbolic TLB.Builder where

indent = TLB.fromText (indent :: T.Text)
emptyIndent = TLB.fromText (emptyIndent :: T.Text)
forChild = TLB.fromText (forChild :: T.Text)
forLastChild = TLB.fromText (forLastChild :: T.Text)
eol = TLB.fromText (eol :: T.Text)
empty = TLB.fromText (empty :: T.Text)

References

1. Peyton Jones S., 1987, The Implementation of Functional Programming Languages,

Prentice-Hall International Series in Computer Science. Prentice Hall International

(UK) Ltd

2. Lipovaca M., 2011, Learn You a Haskell for Great Good!: A Beginners Guide, No

Starch Press; 1st edition (April 21, 2011)

3. Bird R., Wadler R., 1988, Introduction to Functional Programming. Series in Com-

puter Science (Editor: C.A.R. Hoare), Prentice Hall International (UK) Ltd

4. Awodey S., 2010, Category Theory, Second Edition, Oxford University Press

5. Grzanek K., 2014, Monadic Tree Print, JACSM 2014, Vol. 6, No. 2, pp. 147-157

6. GitHub, 2016, Kask.Print module: Kask repository,

https://github.com/kongra/kask/blob/master/src/Kask/Print.hs

7. GitHub, 2016, Kask.Data.Tree.Print module:

https://github.com/kongra/kask/blob/master/src/Kask/Data/Tree/Print.hs

Unauthenticated
Download Date | 5/14/18 12:29 PM

