PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of Continuous and Extreme Hydrological Processes Using Spatially Distributed Models MERCEDES, VICAIR and VISHYR in a Mediterranean Watershed

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrological modeling predicts flood discharge and diminishes the danger by minimizing the environmental damages downstream. This study aimed to investigate the application of the ATHYS Models platform for simulating the rainfall-runoff relationship in Oued Laou Watershed (940 km2 ). The study area is characterized by strong storms associated with the highest rainfall in Morocco, as well as renowned for its regular water supply and historical flooding; for these reasons, it is classified as a vulnerable area during a rainfall event. The models of the ATHYS platform have been implemented in continuous time during (2004–2012), and in four hourly rainfall extremes recorded in March 2018 at the Kodiat Khorireen station. The VICAIR model was used to visualize, analyze and spatially adjust the input data in raster format (land use, soil numerical map, slope, and flow direction). The VISHYR model, on the other hand, was used for corrections, calculations, management, and visualization of local hydro-climatic data in the FTS63 format. Under the MERCEDES model, the combination of the Soil Conservation Service (SCS) production function and the Lag and Route (L&R) transfer function has produced satisfactory results for continuous simulation periods and for the extreme scenarios. The modeling of the flow process in the Oued Laou by the ATHYS platform produced a reasonable performance with an average NSE of 0.70, R2 of 0.73, PBIAS of 13% and RMSE of 0.46. The research results reveal that the storage parameters, soil type, land use, and vegetation are the most important factors affecting the sensitivity of the hydrological response in the Oued Laou watershed. Moreover, the results indicate that the MERCEDES model is an appropriate tool for modeling floods and flow volumes associated with specific rain events and could be used by managers and decision-makers as a tool for flood forecasting in Morocco.
Słowa kluczowe
Twórcy
  • Applied Geology and Remote Sensing Research Team, Applied Geology Research Laboratory, Faculty of Sciences and Techniques, Moulay Ismaïl University, Boutalamine, Errachidia, Morocco
  • Faculty of Sciences Tetouan, University Abdelmalek Essaadi, Mhannecch II, Tetouan, Morocco
  • Laboratory of Functional Ecology and Environmental Engineering, USMBA, Faculty of Sciences and Techniques, Fez, Morocco
autor
  • Laboratory 'HydroSystems Analysis', Department of Civil Engineering, Mohammadia School of Engineering, University Mohamed V, Rabat, Morocco
  • Laboratory of Functional Ecology and Environmental Engineering, USMBA, Faculty of Sciences and Techniques, Fez, Morocco
  • Faculty of Sciences Tetouan, University Abdelmalek Essaadi, Mhannecch II, Tetouan, Morocco
Bibliografia
  • 1. Antonis D. Koussis and Katerina Mazi, 2015. Reverse flood and pollution routing with the Lag-andRoute model. Hydrol. Sci. J. https://doi.org/10.1080/02626667.2015.1061194
  • 2. Aqnouy, M., Eddine, J., El, S., Ismail, H., Bouadila, A., Gabriel, J., Navarro, M., Loubna, B., Reda, M., Mansour, A., 2019. Assessment of the SWAT Model and the Parameters Affecting the Flow Simulation in the Watershed of Oued Laou (Northern Morocco ). J. Ecol. Eng. 20, 104–113. https://doi.org/doi.org/10.12911/22998993102794
  • 3. Aqnouy, M., Eddine, J., El, S., Bouadila, A., Bouizrou, I., Aoulad, M.R. 2018. Application of hydrological model «HEC HMS» In a Mediterranean watershed (Oued Laou, Northern of Morocco ), 24(4), 17731781.
  • 4. Arnaud, P., Bouvier, C., Cisneros, L., and Dominguez, R.: Influence of rainfall spatial variability on flood prediction, J. Hydrol., 260, 216–230, 2002.
  • 5. Arnold, J.G., Fohrer, N., 2005. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 572, 563–572. https://doi.org/10.1002/hyp.5611.
  • 6. Bahat, Y., Grodek, T., Lekach, J., Morin, E., 2009. Rainfall–Runoff modeling in a small hyper-arid catchment. J. Hydrol. 373, 204–217. https://doi.org/10.1016/j.jhydrol.2009.04.026
  • 7. Bentura, P.L.F., Michel, C., 1997. Flood routingin a wide channel with a quadratic lag-and-route method. Hydrol. Sci. Sci. Hydrol. 42, 169–190.
  • 8. Bouadila A, Benaabidate L, Bouizrou I, Aqnouy M. Implementation of Distributed Hydrological modeling in a Semi-Arid Mediterranean Catchment «Azzaba, Morocco». Journal of Ecological Engineering. 2019;20(6):236-254. doi:10.12911/22998993/109458.
  • 9. Bouadila, A., Tzoraki, O., & Benaabidate, L. (2020). Hydrological modeling of three rivers under Mediterranean climate in Chile, Greece, and Morocco: study of high flow trends by indicator calculation. Arabian Journal of Geosciences, 13(20). doi:10.1007/s12517-020-06013-2.
  • 10. Bouvier, C. (1994) MERCEDES: Principes du modèle et notice d’utilisation (features of the model and tutorial). Rapport interne ORSTOM.
  • 11. Bouvier C, Fuentes G, Dominquez R (1994) MERCEDES: un modèle hydrologique d’analyse et de prévision de crues en milieu hétérogène (A hydrological distributed model for flood analysis and forecast for heterogeneous watersheds). Comptesrendus des 23emes Journées de la SHF Crues et Inondations, Nîmes.
  • 12. Bouvier, C., Delclaux, F., 1996. ATHYS: a hydrological environment for spatial modeling and coupling with GIS. IAHS Publ 19.
  • 13. Brouziyne, Y., Abouabdillah, A., Bouabid, R., Benaabidate, L., 2018. SWAT streamflow modeling for hydrological components understanding within an agro-sylvo-pastoral watershed in Morocco. J. Mater. Environ. Sci. 9, 128–138. https://doi.org/https://doi.org/10.26872/jmes.2018.9.1.16
  • 14. Cong, Z., Zhang, X., Li, D., Yang, H., Yang, D., 2015. Understanding hydrological trends by combining the Budyko hypothesis and a stochastic soil moisture model. Hydrol. Sci. J. 60, 145–155. https://doi.org/10.1080/02626667.2013.866710
  • 15. Cole, S. J. and Moore, R.J.: Hydrological modeling using raingauge- and radar-based estimators of areal rainfall, J. Hydrol., 358, 159–181, 2008.
  • 16. Chow V.T., Maidment D.R., Mays L.W. (1988) Applied hydrology. McGraw Hill International Editions, New York.
  • 17. Drobinski, P., Da, N., Gérémy, S., Sophie, P., Muller, C., Ahrens, B., Borga, M., Conte, D., Fosser, G., 2018. Scaling precipitation extremes with temperature in the Mediterranean : past climate assessment and projection in anthropogenic scenarios 1237–1257. https://doi.org/10.1007/s00382-016-3083-x
  • 18. Fernandez, G., Chescheir, G.M., Skaggs, R.W., Amatya, D.M., 2007. Application of DRAINMOD-GIS to a lower coastal plain watershed. Trans. Asabe 50, 439–447.
  • 19. Gaagai A., Boudoukha A., Benaabidate L. 2020. Failure simulation of Babar dam – Algeria and its impact on the valley downstream section. Journal of Water and Land Development. No. 44 (I–III) p. 75–89. DOI: 10.24425/jwld.2019.127048.
  • 20. Garba, H., Chukwujama, I.A., 2016. Evaluating the performance of a hydrological model on River Kaduna discharge. J. Eng. Res. Appl. 6, 25–29.
  • 21. Gaume, E., Livet, M., Desbordes, M., Villeneuve, J., 2004. Hydrological analysis of the river Aude , France , flash flood on 12 and 13 November 1999. J. Hydrol. 286, 135–154. https://doi.org/10.1016/j.jhydrol.2003.09.015
  • 22. Gichamo, T.Z., Popescu, I., Jonoski, A., Solomatine, D., 2012. River cross-section extraction from the ASTER global DEM for flood modeling . Environ. Model. Softw. 31, 37–46. https://doi.org/10.1016/j.envsoft.2011.12.003.
  • 23. Gonzales, A.L., Nonner, J., Heijkers, J., Uhlenbrook, S., 2009. Comparison of different base flow separation methods in a lowland catchment. Hydrol. Earth Syst. Sci. 13, 2055–2068. https://doi.org/10.5194/hess-13-2055-2009.
  • 24. Guohua Fang ,Yu Yuan, Yuqin Gao, Xianfeng Huang and Yuxue Guo., 2018. Assessing the Effects of Urbanization on Flood Events with Urban Agglomeration Polders Type of Flood Control Pattern Using the HEC-HMS Model in the. Water 10. https://doi.org/10.3390/w10081003.
  • 25. Guy Delrieu., Véronique Ducrocq, Eric Gaume, John Nicol, Olivier Payrastre, Eddy Yates, et al., 2005. The Catastrophic Flash-Flood Event of 8–9 September 2002 in the Gard Region, France: A First Case Study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory. J. Hydrometeorol. 6, 34. https://doi.org/http://dx.doi.org/10.1175/JHM-400.1
  • 26. Halwatura, D., Najim, M.M.M., 2013. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environ. Model. Softw. 46, 155–162. https://doi.org/10.1016/j.envsoft.2013.03.006.
  • 27. Hans-Reinhard Verworn., Lars Stuecken 2001. The effects of uniform versus distributed rainfall input on urban drainage modeling results. Specialty Symposium on Urban Drainage modeling at the World Water and Environmental Resources Congress 2001 30–40.
  • 28. Herzel, S., 2005. C Onsistent C Alibration of Hjm M Odels To C Ap I Mplied V Olatilities. J. Hydrol. Eng. 25, 1093–1120. https://doi.org/10.1002/fut.20174.
  • 29. Jin, H., Liang, R., Wang, Y., Tumula, P., 2015. Flood-runoff in semi-arid and sub-humid regions, a case study: A simulation of Jianghe watershed in northern China. Water (Switzerland) 7, 5155–5172. https://doi.org/10.3390/w7095155.
  • 30. Jonkman, S.N., 2005. Global Perspectives on Loss of Human Life Caused by Floods. Nat. Hazards 34, 151–175.
  • 31. Liu, D., Chang, J., Tian, F., Huang, Q., Meng, X., 2015. Analysis of baseflow index based hydrological model in Upper Wei River basin on the Loess Plateau in China. IAHS-AISH Proc. Reports 368, 403–408. https://doi.org/10.5194/piahs-368-403-2015.
  • 32. Madsen, H., 2003. Parameter estimation in distributed hydrological catchment modeling using automatic calibration with multiple objectives. Adv. Water Resour. 26, 205–216. https://doi.org/10.1016/S0309-1708(02)00092-1.
  • 33. Maref, N., Seddini, A., 2018. modeling of flood generation in semi-arid catchment using a spatially distributed model : case of study Wadi Mekerra catchment ( Northwest Algeria ). Arab. J. Geosci. 11, 116. https://doi.org/https://doi.org/10.1007/s12517-018-3461-2.
  • 34. M. Coustau, C. Bouvier, V. Borrell-Estupina, and H. Jourde ., 2012. Flood modeling with a distributed event-based parsimonious rainfall-runoff model: case of the karstic Lez river catchment. Nat. Hazards Earth Syst. Sci., 12, 1119–1133, 2012 www.nat-hazards-earth-syst-sci.net/12/1119/2012/ doi:10.5194/nhess-12-1119-2012
  • 35. Moriasi, D.N., Gitau, M.W., Pai, N., Daggupati, P., 2015. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 58, 1763–1785. https://doi.org/10.13031/trans.58.10715.
  • 36. Muthuwatta, L.A.L.P., Booij, M.J., Rientjes, T.O.M.H.M., 2009. Calibration of a semi-distributed hydrological model using discharge and remote sensing data. New Approaches to Hydrol. Predict. Data-sparse Reg. 52–58.
  • 37. Nash, J.E., Sutcliffe, J. V, 1970. River Flow Forecasting Through Conceptual Models Part I-a Discussion of Principles. J. Hydrol. 10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
  • 38. Rao, K.H.V.D., Rao, V.V., Dadhwal, V.K., Behera, G., Sharma, J.R., 2011. A distributed model for realtime flood forecasting in the Godavari Basin using space inputs. Int. J. Disaster Risk Sci. 2, 31–40. https://doi.org/10.1007/s13753-011-0014-7
  • 39. Ritter, A., Muñoz-Carpena, R., 2013. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodnessof-fit assessments. J. Hydrol. 480, 33–45. https://doi.org/10.1016/j.jhydrol.2012.12.004.
  • 40. Savenije, H.H.G., 2009. HESS Opinions “The art of hydrology”. Hydrol. Earth Syst. Sci 13, 157–161.
  • 41. Seibert, J., 1999. Jan Seibert Conceptual runoff models - fiction or representation of reality ? Acta Univ. Ups., Compr. Summ. Uppsala Diss. from Fac. Sci. Technol. ISBN 91-55, 436. 52 pp.
  • 42. Shimelis G. Setegn, Ragahavan Srinivasan, and B.D, 2014. Hydrological modeling in the Lake Tana Basin, Ethiopia Using SWAT Model https://doi.org/10.2174/1874378100802010049.
  • 43. Soulis K. X., Valiantzas J. D., N. Dercas, and P. A. Londra, 2009. Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed. Hydrol. Earth Syst. Sci. 13, 605–615.
  • 44. Son Nguyen and Christophe Bouvier, 2019. Flood modeling using the distributed event-based SCS-LR model in the Mediterranean Real Collobrier catchment. Hydrological Sciences Journal. https://doi.org/10.1080/02626667.2019.1639715.
  • 45. Skhakhfa I.D., Ouerdachi L. 2016. Hydrological modeling of wadi Ressoul watershed, Algeria, by HECHMS model. Journal of Water and Land Development. No. 31 p. 139–147. DOI: 10.1515/jwld-2016-0045.
  • 46. Tramblay, Y., Bouvier, C., Ayral, P.A., Marchandise, A., 2011. Impact of rainfall spatial distribution on rainfall-runoff modeling efficiency and initial soil moisture conditions estimation. Nat. Hazards Earth Syst. Sci. 11, 157–170. https://doi.org/10.5194/nhess-11-157-2011.
  • 47. Vema, V., Sudheer, K.P., Chaubey, I., 2017. Development of a hydrological model for simulation of runoff from catchments unbounded by ridge lines. J. Hydrol. 551, 423–439. https://doi.org/10.1016/j.jhydrol.2017.06.012.
  • 48. Wegehenkel, M., 2009. Advances in Geosciences modeling of vegetation dynamics in hydrological models for the assessment of the effects of climate change on evapotranspiration and groundwater recharge, 109–115.
  • 49. Wi, S., Yang, Y.C.E., Steinschneider, S., Khalil, A., Brown, C.M., 2015. Calibration approaches for distributed hydrologic models in poorly gaged basins: Implication for streamflow projections under climate change. Hydrol. Earth Syst. Sci. 19, 857–876. https://doi.org/10.5194/hess-19-857-2015
  • 50. Xavier Briottet, S.V., Nesrine Chehata, Rosa Oltra-carrio, Arnaud Le Bris and Christiane Weber. 2016. Land Surface Remote Sensing in Urban and Coastal Areas 1–62. https://doi.org/10.1016/B978-1-78548-160-4.50001-7.
  • 51. Yang, C., Yu, Z., Hao, Z., Lin, Z., Wang, H., Engineering, H., Engineering, H., Sciences, E., Engineering, H., 2011. Effects of vegetation cover on hydrological processes in a large region: the huaihe river basin, china. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000440.
  • 52. Yen, H., Hoque, Y., Harmel, R.D., Jeong, J., 2015. The impact of considering uncertainty in measured calibration/validation data during auto-calibration of hydrologic and water quality models. Stoch. Environ. Res. Risk Assess. 29, 1891–1901. https://doi.org/10.1007/s00477-015-1047-z.
  • 53. Zhao, F., Zhang, L., Chiew, F.H.S., Vaze, J., Cheng, L., 2013. The effect of spatial rainfall variability on water balance modeling for south-eastern Australian catchments q. J. Hydrol. 493, 16–29. https://doi.org/10.1016/j.jhydrol.2013.04.028.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaefc9f5-beee-400f-9f71-62004f92e49a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.