PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Modelling of the Viscoplastic Behaviour of Homogeneous Solid Propellants

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study is concerned with the mechanical properties of homogenous solid propellants. The experimental results demonstrate the high strain rate sensitivity of these materials. A modified viscoplastic model of the Bodner- Partom type was applied to simulate the nonlinear behaviour of solid propellants when subjected to uni-axial loading conditions. The material parameters of the constitutive law were identified numerically using the evolutionary algorithm. The capability of the proposed approach was investigated for a representative solid fuel sample. The efficiency of the method is discussed.
Rocznik
Strony
159--174
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Institute of Vehicles, Warsaw, Narbutta 84, Poland
autor
  • Warsaw University of Technology, Institute of Machine Design Fundamentals, Warsaw, Narbutta 84, Poland
Bibliografia
  • [1] Zalewski R., Wolszakiewicz T., Analysis of Uniaxial Tensile Tests for Homogeneous Solid Propellants under Various Loading Conditions, Cent. Eur. J. Energ. Mater., 2011, 8(4), 223-231.
  • [2] Zalewski R., Wolszakiewicz T., Experimental Research of Fundamental Mechanical Properties of Homogeneous Solid Rocket Propellants, Przemysl Chemiczny, 2012, 91(9), 1825-1829.
  • [3] Ho S.-Y., High Strain-Rate Constitutive Models for Solid Rocket Propellants, J. Prop. Power, 2002, 18(5), 1106-1111.
  • [4] Shekhar H., Kankane D. K., Viscoelastic Characterization of Different Solid Rocket Propellants Using the Maxwell Spring-Dashpot Model, Cent. Eur. J. Energ. Mater, 2012, 9(3), 189-199.
  • [5] Yaman H., Çelik V., Değirmenci E., Experimental Investigation of the Factors Affecting the Burning Rate of Solid Rocket Propellants, Fuel, 2014, 115, 794-803.
  • [6] Agrawal J.P., High Energy Materials, Wiley-VCH, Weinheim, 2010, 320-324.
  • [7] Zalewski R., Pyrz M., Wolszakiewicz T., Modeling of Solid Propellants Viscoplastic Behavior Using Evolutionary Algorithms, Cent. Eur. J. Energ. Mater., 2010, 7(4), 289-300.
  • [8] Zalewski R., Wolszakiewicz T., Bajkowski J., Temperature Influence on Fundamental Mechanical Properties of Homogeneous Solid Propellants, Przemysl Chemiczny, 2012, 91(9), 1830-1833.
  • [9] Wu X.G, Yan Q.L, Guo X, Qi X.F, Li X.J, Wang K.Q., Combustion Efficiency and Pyrochemical Properties of Micron-sized Metal Particles as the Components of Modified Double-base Propellant, Acta Astronaut., 2011, 68, 1098-112.
  • [10] Frank G.J., Brockman R.A., A Viscoelastic-viscoplastic Constitutive Model for Glassy Polymers, Int. J. Solids Struct., 2001, 38, 5149-64.
  • [11] Ho K., Krempl E., Extension of the Viscoplasticity Theory Based on Overstress (VBO) to Capture Non-standard Rate Dependence in Solids, Int. J. Plasticity, 2002, 18, 851-72.
  • [12] Zaïri F., Naït-Abdelaziz M., Woznica K., Gloaguen J.M., Constitutive Equations for the Viscoplastic-damage Behaviour of a Rubber-modified Polymer, Eur. J. Mech. A/Solids, 2005, 24, 169-182.
  • [13] Zaïri F., Woznica K., Naït-Abdelaziz M., Gloaguen J.M., Elasto-viscoplastic Constitutive Equations for the Description of Glassy Polymers Behaviour at Constant Strain Rate, J. Eng. Mater. Technol., 2007, 129, 1-7.
  • [14] Colak O.U., Modeling Deformation Behavior of Polymers with Viscoplasticity Theory Based on Overstress, Int. J. Plasticity, 2005, 21, 145-60.
  • [15] Bodner S.R., Partom Y., Constitutive Equations for Elastic-viscoplastic Strain-hardening Materials, J. Appl. Mech., 1975, 42, 385-89.
  • [16] Rowley M.A., Thornton E.A., Constitutive Modeling of the Visco-plastic Reponse of Hastelloy-x and Aluminium Alloy 8009, J. Eng. Mater. Technol., 1996, 118, 19-27.
  • [17] Michalewicz Z., Genetic Algorithms + Data Structures =Evolution Programs, Springer, Berlin, 1992.
  • [18] Lin J., Yang J., GA-based Multiple Objective Optimization for Determining Viscoplastic Constitutive Equations for Superplastic Alloys, Int. J. Plasticity, 1999, 15, 1181-96.
  • [19] Pyrz M., Zalewski R., Modeling of Granular Media Submitted to Internal Underpressure, Mech. Res. Commun., 2010, 37(2), 141-144.
  • [20] Zalewski R., Pyrz M., Experimental Study and Modeling of Polymer Granular Structures Submitted to Internal Underpressure, Mech. Mater., 2013, 57, 75-85.
  • [21] Hemin A., Messager T., Ayoub G., Zaïri F., Naït-Abdelaziz M., Zhengwei Q., Zairi F., A Two-phase Hyperelastic-viscoplastic Constitutive Model for Semi-crystalline Polymers: Application to Polyethylene Materials with a Variable Range of Crystal Fractions, J. Mech. Behav. Biomed. Mater., 2014, 37, 323-332.
  • [22] Hemin A., Messager T., Zaïri F., Naït-Abdelaziz M., Large-strain Viscoelastic-viscoplastic Constitutive Modeling of Semi-crystalline Polymers and Model Identification by Deterministic/Evolutionary Approach, Comput. Mater. Sci., 2014, 90, 241-252.
  • [23] Zalewski R., Constitutive Model for Special Granular Structures, International Journal of Non-Linear Mechanics, 2010, 45(3), 279-285.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaef62c0-ea4f-46fd-bf9d-e092fef26e28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.