PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of TiAl and Ti3Al reinforcement on microstructure changes and properties of aluminium matrix composites

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Purpose: The main purpose of this monograph research is to present the results of the author’s own investigations concerning development and characterisation of the aluminium matrix composite’s reinforced with intermetallic particles being the outcome of the concept of merging the mechanical alloying with the powder metallurgy. As the result the nanostructured composites were fabricated with the exclusive mechanical properties as the result of fine microstructure. Design/methodology/approach: Powder metallurgy (PM) combined with (MA) offers innumerable advantages over casting metallurgy, making possible to improve the existing properties but also conferring new properties. Results presented in this paper were obtained in such processes. Experiment have been developed to improve the characteristics of aluminum matrix composites, because of produced fine and uniform dispersions of reinforcements particles. Final consolidation, shaping and forming have been done by hot extrusion. Testing of mechanical properties encompassed hardness testing, tensile as well as compression testing, and determining the sliding wear resistance. Detailed structural examinations have been carried out to determine the effect of mechanical alloying and reinforcing particles on microstructure changes and properties of investigated composites. Findings: Applying mechanical alloying route of composite powders production, makes it possible to obtain diminution of reinforcing particles size as well as homogenous reinforcement particles distribution. Extruded composites are characterized by a very homogeneous distribution of intermetallic particles and the absence of any reaction and with good cohesion at the matrix/particle interfaces. Observed changes in the microstructure, influence on the mechanical properties of obtained composite particles. Practical implications: Aluminium matrix composites (AMCs) reinforced with ceramic particles have already found several applications. However, they suffer from some drawbacks due to high abrasiveness and brittleness of ceramics. Lately, intermetallic particles have emerged as possible substitutes for ceramic reinforcements in aluminium alloys. Originality/value: Employment of the modern composite production techniques, and especially of the nanostructured one with emerging potetial of intermetallics as the reinforcing phases, makes it possible to obtain specific properties thus application. The paper presents extensive knowledge related to microstructure and effect of reinforcement on it.
Rocznik
Strony
55--79
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] K.K. Chawla, Composites materials, Science and engineering, Springer Springer-Verlag GmbH, 2012.
  • [2] F.L. Matthew, R.D. Rawlings, Composite materials enginnering and science, Chapman&Hall, London, 1994.
  • [3] N. Chawla, K.K. Chawla, Metal matrix composites, Kluwer Academic Publ, Springer Verlag GmbH, 2005.
  • [4] I. Hyla, Composites, Publishing House of Silesian University of Technology, Gliwice, 1986 (in Polish).
  • [5] S. Wojciechowski, New trends in the developement of mechanical engineering materials, Journal of Materials Processing Technology 106 (2000) 230-235.
  • [6] L.A. Dobrzański, Materials engineering and design materials, WNT, Warsaw 2006 (in Polish).
  • [7] F. Wojtkun, J. Sołncew, Special-purpose materials, Radom University of Technology Publishing House, 2001 (in Polish).
  • [8] J. Śleziona, Fundamentals of composites, Silesian University of Technology Publishing House, Gliwice, 1998 (in Polish).
  • [9] J.V. Foltz, C.M. Blackmon, Metal matrix composites, Advanced Materials and Process 154/6 (1998) 19-23.
  • [10] H.P. Degisher, P. Prader, Ch. San Marchi, Assesment of metal matrix composites for innovations – intermediate report of a European Thematic Network, Composites A 32 (2001) 1161-1160.
  • [11] http://mmc-assess.tuwien.ac.at/mmc/Home.html.
  • [12] J. Nowacki, Sintered metals and metal matrix composites, WNT, Warsaw, 2005 (in Polish).
  • [13] J. Sobczak, Metal matrix composite, ITS and Foundry Research Institute, Cracow Warsaw, 2001 (in Polish).
  • [14] X. Zhang, M.J. Tan, Powder metal matrix composites: selection and processing, Materials Science and Engineering A 244 (1998) 80-85.
  • [15] A. Bose, Advances in particulate materials, Butterworth- Heinemann, Newton, 1995.
  • [16] J.M. Torralba, C.E. Costa, F. Velasco, P/M aluminium matrix composites: an overview, Journal of Materials Processing Technology 133 (2003) 203-206.
  • [17] J. Śleziona, Factors influencing the structure and some properties of the composites Al - ceramic particles, Archives of Materials Science 13 (1992) 197-208 (in Polish).
  • [18] J.W. Kaczmar, K. Pietrzak, W. Włosiński, The production and application of metal matrix composite materials, Journal of Materials Processing Technology 106/1-3 (2000) 58-67.
  • [19] M.R. Ghomashchi, Fabrication of near net-shaped Al-based intermetallic metal matrix composites, Journal of Materials Processing Technology 112 (2001) 227-235.
  • [20] T. Lorentzen, A.P. Clarke, Thermomechanically induced residual strains in Al/SiCp metal-matrix composites, Composites Science and Technology 58/3-4 (1998) 345-353.
  • [21] A. Olszówka-Myalska, J. Szala, J. Śleziona, B. Formanek, J. Myalski, Influence of Al Al2O3 composite powder on the matrix microstructure in composite casts, Materials Characterization 49 (2003) 165-169.
  • [22] S. Szczepanikew materials produced from powders and composites on aluminium matrix received by means of forging and hot extrusion Metallurgy – Metallurgical Engineering News 5 (1999) 245-251 (in Polish).
  • [23] L. Looney, G. O`Donnell, Production of aluminium matrix composite components using conventional PM technology, Materials Science and Engineering A 303/1-2 (2001) 292-301.
  • [24] W.H. Hunt, T. Rodjom, Discontinuously reinforced aluminum materials by powder metallurgy process, Advances in Powder Metallurgy and Particulate Materials 9 (1992).
  • [25] J.B. Fogagnolo, E.M. Ruiz-Navas, M.H. Robert, J.M. Torralba, 6061 Al reinforced with silicon nitride particles processed by mechanical milling, Scripta Materialia 47 (2002) 243 248.
  • [26] A.B. Gurcan, T.N. Baker, Wear behaviour of AA6061 aluminium alloy and its composites, Wear 188 (1995) 185-191.
  • [27] B. Formanek, A. Maciejny, K. Szopiński, A. Olszówka- Myalska, Composite powder materials obtained by mechanical alloying process, Materials Engineering XX/3-4 (1999) 137-143 (in Polish).
  • [28] J. Śleziona, B. Formanek, J. Wieczorek, A. Dolata-Grosz, Preparation of aluminum matrix composites reinforced by dispersion ceramic particles, Composites 1 (2001) 180-183
  • (in Polish).
  • [29] K. Gawdzińska, The possibility of defects in metal matrix composites in the area of connections metal matrix - reinforcement, Archives of Foundry Engineering 18/1/2 (2006) 353-358 (in Polish).
  • [30] L.M. Tham, M. Gupta, L. Cheng, Effect of reinforcement volume fraction on the evolution of reinforcement size during the extrusion of Al-SiC composites, Materials Science and Engineering A 326/2 (2002) 355-363.
  • [31] L.A. Dobrzański, A. Włodarczyk, M. Adamiak, Aluminium EN AW-2124 alloy matrix composites reinforced with Ti(C, N), BN and Al2O3 particles, Materials Engineering 24/6 (2003) 609-612 (in Polish).
  • [32]V. Amigo, J.L. Ortiz, M.D. Salvador, Microstructure and mechanical behavior of 6061Al reinforced with silicon nitride particles, processed by powder metallurgy, Scripta Materilia 42 (2000) 383-388.
  • [33]F. Bonollo, L. Ceschini, G.L. Garagnani, Mechanical and impact behavior of (Al2O3)p/2014 and (Al2O3)p/6061 Al metal matrix composites in the 25-200°C range, Applied Composite Materials 4 (1997) 173-185.
  • [34]A. Hahnel, E. Pippel, A. Feldhoff, R. Schneider, J. Woltersdorf, Reaction layers in MMCs and CMCs: structure, composition and mechanical properties, Materials Science and Engineering A 237/2 (1997) 173–179.
  • [35]H. Morawiec, A. Kostka, J. Lelątko, M. Gigla, Interfacial structure of the Al-TiC composite, Composites 1 (2001) 229-232 (in Polish).
  • [36]D.W. McComb, X.G. Ning, G.C. Weatherly, J. Pan, D.J. Lloyd, Interfacial reaction chemistry in Al-based metal-matrix composites, Philosophical Magazine A 80/11 (2000) 2509-2527.
  • [37]A. Kostka, J. Lelątko, M. Gigla, H. Morawiec, Structure of interface in Al-TiB2 composite studied by TEM, Composites 2 (2002) 297-301 (in Polish).
  • [38]J. Śleziona, B. Formanek, A. Olszówka-Myalska, Obtaining of aluminium alloys matrix composites reinforced with fine dispersed ceramic and intermetallic particles, Materials Engineering 23/3 (2002) 122-128 (in Polish).
  • [39]H. Morawiec, A. Kostka, J. Lelątko, M. Gigla, Interfacial structure of the Al-TiC composite, Composites 1 (2001) 229-232 (in Polish).
  • [40]J.B. Fogagnolo, E.M. Ruiz-Navas, M.H. Robert, J.M. Torralba, 6061 Al reinforced with silicon nitride particles processed by mechanical milling, Scripta Materialia 47 (2002) 243 248.
  • [41]J.B. Fogagnolo, E.M.J.A. Pallone, D.R. Martinb, C.S. Kiminami, C. Bolfarini, W.J. Botta, Processing of Al matrix composites reinforced with Al-Ni compounds and Al2O3 by reactive milling and reactive sintering, Journal of Alloys and Compounds 471 (2009) 448-452. [42]J.B. Fogagnolo, M.H. Robert, J.M. Torralba, Mechanically alloyed AlN particlereinforced Al-6061 matrix composites, Powder processing, consolidation and mechanical strength and hardness of the as-extruded materials, Materials Science and Engineering A 426 (2006) 85 94.
  • [43]M.H. Robert, S.L. Urtiga Filho, Mechanical properties of Al-NbAl3 in situ composites, Journal of Materials Processing Technology 64/1 (1997) 335-341.
  • [44]J.S. Benjamin, Dispersion strengthened superalloys by mechanical alloying, Metallurgical Transactions 1 (1970) 2943-2951.
  • [45]J.S. Benjamin, The mechanical alloying process, Modern Development in Powder Metallurgy 1 (1988).
  • [46]J.S. Benjamin, Fundamentals of mechanical alloying, Materials Science Forum 88-90 (1992) 1-18.
  • [47]C. Suryanarayana, E. Ivanov, V.V. Boldyrev, The science and technology of mechanical alloying, Materials Science and Engineering A 304-306 (2001) 151–158.
  • [48]M. Richert, Engineering of nanomaterials and ultrafine structures, AGH University of Science and Technology Press, Cracow, 2006 (in Polish).
  • [49]C. Suryanarayana: Mechanical alloying and milling, Progress in Materials Science 46 (2001) 1-184.
  • [50]F. Binczyk, W. Polechoński, S.J. Skrzypek, J. Piątkowski, An application of high energy mill for milling and mechanical alloying of powder materials, Materials Engineering 20/3-4 (1999) 180-185 (in Polish).
  • [51]J.R. Harris, J.A.D. Wattis, J.V. Wood, A comparison of different models for mechanical alloying, Acta Materialia 49 (2001) 3991-4003.
  • [52]F.H. Froes, O.N. Senkov, E.G. Baburaj, Synthesis of nanocrystalline materials-an overview, Materials Science and Engineering A 301/1 (2001) 44-53.
  • [53]F.Y.C. Boey, Z. Yuan, K.A. Khor, Mechanical alloying for the effective dispersion of sub-micron SiCp reinforcements in Al-Li alloy composite, Materials Science and Engineering A 252/2 (1998) 276-287.
  • [54]Y. Wang, W.M. Rainforth, H. Jones, M. Lieblich, Sliding wear behaviour of novel AA2124 aluminium alloy/Ni3Al composites, Materials Science Forum 396/4 (2002) 1473-1478.
  • [55]R. Chen, A. Iwabuchi, T. Shimizu, H.S. Shin, H. Mifune, The sliding wear resistance behavior of NiAl and SiC particles reinforced aluminum alloy matrix composites, Wear 213/1-2 (1997) 175-184.
  • [56]A. Olszowka-Myalska, Microstructural study of the aluminium/nickel aluminide interface formed in a hot-pressed in situ composite, Materials Chemistry And Physics 81 (2003) 333-335.
  • [57]Y. Wang, W.M. Rainforth, H. Jones, M. Lieblich, Dry wear behaviour and its relation to microstructure of novel 6092 aluminium alloy-Ni3Al powder metallurgy composite, Wear 250 (2001) 1421-1432.
  • [58]B. Torres, M. Lieblich, J. Ibanez, A. Garcia-Escorial, Mechanical properties of some PM aluminide and silicide reinforced 2124 aluminium matrix composites, Scripta Materialia 47 (2002) 45-49.
  • [59]A. Olszowka-Myalska, Microstructure of nickel aluminides formed in situ in aluminium matrix composites, Microchimica Acta 145 (2004) 133-137.
  • [60]C.E. Da Costa, F. Velasco, J.M. Torralba, Mechanical, intergranular corrosion, and wear behavior of aluminum-matrix composite materials reinforced with nickel aluminides, Metallurgical And Materials Transactions A, Physical Metallurgy And Materials Science 33 (2002) 3541-3553.
  • [61]M.D. Salvador, V. Amigo, N. Matrinez, D.J. Basquets, Microstructure and mechanical behaviour of Al-Si-Mg alloys reinforced with Ti-Al intermetallics, AMPT, Madrid, 2001. [62]L.A. Dobrzański, A. Włodarczyk, M. Adamiak, The structure and properties of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the BN or Al2O3 ceramic particles, Journal of Materials Processing Technology 175/1-3 (2006) 186-191. [63]L.A. Dobrzański, A. Włodarczyk-Fligier, M. Adamiak, Structure and properties of PM composite materials based on EN AW - AlCu4Mg1(A) aluminium alloy reinforced with the Ti(C,N) particles, Materials Science Forum 539/543 (2007) 895-900.
  • [64] P.B. Silva-Maia, F. Velasco, N. Anton, C.E. Costa, W.C. Zapata, Corrosion resistance of 2014 aluminium matrix composites reinforced with atomised Ni3Al, Advanced Performance Materials 6/2 (1999) 117-127.
  • [65] L.A. Dobrzanski, A. Włodarczyk, M. Adamiak, The structure and properties of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the BN or Al2O3 ceramic particles, Journal of Materials Processing Technology 175/1-3 (2006) 186-191.
  • [66] L.A. Dobrzański, A. Włodarczyk, M. Adamiak, The structure and properties of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the BN or Al2O3 ceramic particles, Journal of Materials Processing Technology 175/1-3 (2006) 186-191.
  • [67] W. Szamański, P. Długosz, M. Richert, Influence of the thermal treatment and the sami liquid-solid state extrusion on the properties of the composites made of the Al3Ti reinforced Al alloys, Materials Engineering 5/124 (2001) 916-919.
  • [68] A. Olszówka-Myalska, Nickel aluminides in aluminium matrix composite materials, Materials Engineering 22/1 (2001) 57-61.
  • [69] L.A. Dobrzanski, A. Włodarczyk, M. Adamiak, The structure and properties of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the BN or Al2O3 ceramic particles, Journal of Materials Processing Technology 175/1-3 (2006) 186-191.
  • [70] R. Chen, A. Iwabuchi, T. Shimizu, H. Seop Shin, H. Mifune, The sliding wear resistance behavior of NiAl and SiC particles reinforced aluminium alloy matrix composites, Wear 213/1-2 (1997) 175-184.
  • [71] C.E. Da Costa, W.C. Zapada, F. Velasco, J.M. Ruiz-Prieto, J.M. Torralba, Wear behaviour of aluminum reinforced with nickel aluminide MMCs, Journal of Materials Processing Technology 92-93 (1999) 66-70.
  • [72] J.M. Torralba, V. Lancau, M.A. Martinez, F. Velasco, P/M aluminum matrix composite reinforced with (AlCr2)p, Journal of Materials Science Letters 19/17 (2000) 1509-1512.
  • [73] M. Adamiak, Mechanical alloying for fabrication of aluminium matrix composite powders with Ti-Al intermetallics reinforcement, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 191-196.
  • [74] L.A. Dobrzański, A. Włodarczyk, M. Adamiak, The structure and properties of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the BN or Al2O3 ceramic particles, Journal of Materials Processing Technology 175/1-3 (2006) 186-191.
  • [75] L.A. Dobrzański, A. Włodarczyk, M. Adamiak, Structure, properties and corrosion resistance of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the Al2O3 ceramic particles, Journal of Materials Processing Technology 162-163 (2005) 27 32.
  • [76] M. Adamiak, J. Fogagnolo, E. Ruiz-Navas, L.A. Dobrzański, J. Torralba, Mechanically milled AA6061/(Ti3Al)P MMC reinforced with intermetallics - the structure and properties, Journal of Materials Processing Technology 155/156 (2004) 2002-2006.
  • [77] A. Włodarczyk-Fligier, M. Adamiak, L.A. Dobrzański, Composite materials based on EN AW-Al Cu4Mg1(A) aluminum alloy reinforced with the BN ceramic particles, Archives of Materials Science and Engineering 42/1 (2010) 29-36.
  • [78] M. Adamiak, The structure and selected properties of the EN AW6061 aluminium alloy base composites reinforced with Ti3Al intermetallic particles, Composites 6/2 (2006)
  • 70-75 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaec8233-24fb-4376-b2a6-57ec41f7b7a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.