PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemistry and tectonic setting of the Chah-Bazargan sub-volcanic mafic dykes, south Sanandaj–Sirjan Zone (SSZ), Iran

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Chah-Bazargan sub-volcanic mafic dykes (trachybasalt and basaltic trachyandesite) are located in the south of the Sanandaj–Sirjan Zone (SSZ), Iran. The dyke mineralogy mostly comprises amphibole, clinopyroxene, olivine, orthopyroxene, and plagioclase as phenocrysts and fine-grained plagioclase and some ferromagnesian minerals in the matrix. The rocks are alkaline and shoshonitic in composition. The mafic melts relate to Neotethys subduction activity beneath the southern SSZ in the ~Eocene–Miocene interval. Markedly positive Ba, U, K, Pb, and Sr and negative HFSE (high field strength elements: Nb, Ta, Zr, Hf, P, and Ti) anomalies demonstrate this subduction. The sub-volcanic mafic dykes were produced from a metasomatized upper lithospheric mantle wedge at a depth consistent with the stability field of phlogopite-spinel (or -spinel/garnet) lherzolite. Geochemical studies on the basis of the rare earth elements (REE) and HFSE, and large ion lithophile elements (LILE) display that the mantle wedge underwent degrees of partial melting averaging between 5 and 15% to form the Chah-Bazargan sub-volcanic mafic dykes. It is possible that the chemical composition of the rocks was changed due to fractional crystallization and crustal contamination during emplacement.
Rocznik
Strony
447--458
Opis fizyczny
Bibliogr. 80 poz., rys., wykr.
Twórcy
autor
  • Urmia University, Department of Geology, 57153-165 Urmia, Islamic Republic of Iran
Bibliografia
  • 1. Aftabi, A., 1999. Geochemical aspects of sheared zones as an indication of porphyry Cu-Mo-Au-Ag mineralization at Derehamzeh, Kerman: Iran. Exploration Mining of Geology, 6: 261-267.
  • 2. Aftabi, A., Atapour, H., 1997. Geochemical and petrological characteristics of shoshonitic and potassic calcalkaline magmatism at Sarcheshmeh and Dehsiahan porphyry copper deposits, Kerman, Iran (in Persian with English abstract). Research Bulletin, Isfahan University, 9: 127-156.
  • 3. Aftabi, A., Atapour, H., 2000. Regional aspects of shoshonitic volcanism in Iran. Episodes, 23: 119-125.
  • 4. Agard, P., Omrani, J., Jolivert, L., Mouthereau, F., 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences (Geologische Rundschau), 94: 401-419.
  • 5. Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B., Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine, 148: 692-725.
  • 6. Alavi, M., 1994. Tectonic of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229: 211-238.
  • 7. Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., Mitchell, J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102: 67-95.
  • 8. Allen, M.B., Armstrong, H.A., 2008. Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 265: 52-58.
  • 9. Azizi, H., Asahara, Y., Tsuboi, M., 2014. Quaternary high-Nb basalts: existence of young oceanic crust under the Sanandaj-Sirjan Zone, Nw Iran. International Geology Review, 56: 167-186.
  • 10. Berberian, F., Berberian, M., 1981. Tectono-plutonic episodes in Iran. American Geophysical Union, Geodynamics series, 3: 5-32.
  • 11. Berberian, F., Muir, I.D., Pankhurst, R.J., Berberian, M., 1982. Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, 139: 605-614.
  • 12. Berberian, M., 1995. Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics, 241: 193-224.
  • 13. Berberian, M., King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18: 210-265.
  • 14. Best, M.G., 2003. Igneous and Metamorphic Petrology. Blackwell.
  • 15. Currie, K.L., Williams, P.R., 1993. An Archean calcalkaline lamprophyre suite, northeastern Yilgarn block, Western Australia. Lithos, 31: 33-50.
  • 16. Davoudian, A.R., Genser, J., Neubauer, F., Shabanian, N., 2016. 40Ar/39Ar mineral ages of eclogites from North Shahrekord in the Sanandaj-Sirjan Zone, Iran: Implications for the tectonic evolution of Zagros orogeny. Gondwana Research, 37: 216-240.
  • 17. Fazlnia, A.N., Moradian, A., Rezaei, K., Moazzen, M., Alipour, S., 2007. Synchronous activity of anorthositic and S-type granitic magmas in the Chah-Dozdan batholith, Neyriz, Iran: evidence of zircon SHRIMP and monazite CHIME dating. Journal of Sciences, IR of Iran, 18: 221-237.
  • 18. Fazlnia, A.N., Schenk, V., van der Straaten, F., Mirmohammadi, M.S., 2009. Petrology, geochemistry, and geochronology of trondhjemites from the Quri Complex, Neyriz, Iran. Lithos, 112: 413-433.
  • 19. Fazlnia, A.N., Schenk, V., Appel, P., Alizade, A., 2013. Petrology, geochemistry, and geochronology of the Chah-Bazargan gabbroic intrusions in the south Sanandaj-Sirjan zone, Neyriz, Iran. International Journal of Earth Sciences, 102: 1403-1426.
  • 20. Fitton, J.G., Upton, B.G.J., 1987. Alkaline Igneous Rocks. Blackwell Scientific, Oxford.
  • 21. Frey, F.A., 1980. The origin of pyroxenites and garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: trace element evidence. American Journal of Science, 280: 427-449.
  • 22. Frost, B.R., Frost, C.D., 2014. Essentials of Igneous and Metamorphic Petrology. Cambridge University Press.
  • 23. Fujimaki, H., Tatsumoto, M., Aoki, K., 1984. Partition coefficients of Hf, Zr and REE between phenocrysts and groundmasses. Proceedings of the Fourteenth Lunar and Planetary Science Conference, Part 2. Journal of Geophysical Research and Supplement, 89: 662-672.
  • 24. Gill, R., 2010. Igneous Rocks and Processes: A Practical Guide. Wiley-Blackwell.
  • 25. Golonka, J., 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381: 235-273.
  • 26. Haldar, S.K., Tišljar, J., 2014. Introduction to Mineralogy and Petrology. Elsevier.
  • 27. Hassanzadeh, J., 1993. Metallogenic and tectonomagmatic events in the SE sector of Cenozoic active continental margin of Central Iran (Sharebabak area), Kerman province. Ph.D. thesis, University of California, Los Angeles.
  • 28. Hassanzadeh, J., Wernicke, B.P., 2016. The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics, 35: 586-621.
  • 29. Honarmand, M., Li, X-H., Nabatian, G., Neubauer, F., 2017. In situ zircon U-Pb age and Hf-O isotopic constraints on the origin of the Hasan-Robat A-type granite from Sanandaj-Sirjan zone, Iran: implications for reworking of Cadomian arc igneous rocks. Mineralogy and Petrology, 111: 659-675.
  • 30. Hosseini, M.R., Hassanzadeh, J., Alirezaei, S., Sun, W., Li, C.-Y., 2017. Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: geochemistry and U-Pb zircon geochronology. Lithos, 284-285: 296-309.
  • 31. Irving, A.J., Frey, F.A., 1978. Distribution of trace elements between garnet megacrysts and host volcanic liquidus of kimberkitic to rhyolitic composition. Geochimica et Cosmochimica Acta, 42: 771-787.
  • 32. Karimi, S., Tabatabaei Manesh, S.M., 2016. Textural relations, P-T path, polymetamorphism and also geodynamic significance of metamorphic rocks of the Aligudarz-Khonsar region, Sanandaj-Sirjan zone, Iran. Petrology, 24: 100-115.
  • 33. Keskin, M., 2003. Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30: 1-4.
  • 34. Keskin, M., 2005. Domal uplift and volcanism in a collision zone without a mantle plume: evidence from Eastern Anatolia. http://www.mantleplumes.org/
  • 35. Khadivi, S., Mouthereau, F., Barbarand, J., Adatte, T., Lacombe, O., 2012. Constraints on paleodrainage evolution induced by uplift and exhumation on the southern flank of the Zagros-Iranian Plateau. Journal of the Geological Society, 169: 83-97.
  • 36. Kheirkhah, M., Allen, M.B., Emami, M., 2009. Quaternary syn-collision magmatism from the Iran/Turkey borderlands. Journal of Volcanology and Geothermal Research, 182: 1-12.
  • 37. Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist, 68: 277-279.
  • 38. Krmiček, L., 2010. Pre-Mesozoic lamprophyres and lamproites of the Bohemian Massif (Czech Republic, Poland, Germany, Austria). Mineralogia Polonica, Special Papers, 37: 38-46.
  • 39. McDonough, M., 1991. Chemical and isotope systematics of continental lithospheric mantle. In: Kimberlites, Related Rocks and Mantle Xenoliths (eds. H.O.A. Meyer and O.H. Leonardos): 478-485. Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro.
  • 40. McKenzie, D.P., O'Nions, R.K., 1991. Partial melt distribution from inversion of rare earth element concentrations. Journal of Petrology, 32: 1021-1091.
  • 41. McQuarrie, N., van Hinsbergen, D.J.J., 2013. Retrodeforming the Arabia-Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology, 41: 315-318.
  • 42. Mehdipour Ghazi, J., Moazzen, M., 2015. Geodynamic evolution of the Sanandaj-Sirjan zone, Zagros orogen, Iran. Turkish Journal of Earth Sciences, 24: 513-528.
  • 43. Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37: 215-224.
  • 44. Mitchell, R.H., Eby, G.N., Martin, R.F., 1996. Alkaline rocks: petrology and mineralogy. Canadian Mineralogist, 34: 173-484.
  • 45. Moghadam, H.S., Stern, R.J., 2011. Geodynamic evolution of late Cretaceous Zagros ophiolites: formation of Oceanic Lithosphere above a Nascent Subduction Zone. Geological Magazine, 148: 762-801.
  • 46. Mohajjel, M., Fergusson, C.L., 2014. Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review, 56: 263-287.
  • 47. Molinaro, M., Zeyen, H., Laurencin, X., 2005. Lithospheric structure underneath the SE Zagros Mountains, Iran: recent slab break-off? Terra Nova, 25: 1-6.
  • 48. Moradian, A., 1990. Petrological and economical evaluation of feldspathoidal rocks of northern Shahrebabak, Kerman (in Persian). M.Sc. thesis, Tehran University.
  • 49. Morris, E.M., Pasteris, J.D., 1987. Mantle metasomatism and alkaline magmatism. GSA Special Paper, 215.
  • 50. Mouthereau, F., 2011. Timing of uplift in the Zagros belt/Iranian plateau and accommodation of late Cenozoic Arabia/Eurasia convergence. Geological Magazine, 148: 726-738.
  • 51. Mouthereau, F., Lacombe, O., Vergés J., 2012. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532-535: 27-60.
  • 52. Neill, I., Meliksetian, K., Allen, M.B., Navasardyan, G., Karapetyan, S., 2013. Pliocene-Quaternary volcanic rocks of NW Armenia: magmatism and lithospheric dynamics within an active orogenic plateau. Lithos, 180-181: 200-215.
  • 53. Neill, I., Meliksetian, K., Allen, M.B., Navasardyan, G., Kuiper, K., 2015. Petrogenesis of mafic collision zone magmatism: the Armenian sector of the Turkish-Iranian Plateau. Chemical Geology, 403: 24-41.
  • 54. Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., Jolivet, L., 2008. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos, 106: 380-398.
  • 55. Rickwood, P.C., 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22: 247-263.
  • 56. Rock, N.M.S., 1987. The nature and origin of lamprophyres: an overview. Geological Society Special Publications, 30: 191-226.
  • 57. Rock, N.M.S., 1991. Lamprophyres. Blackie and Sons Ltd.
  • 58. Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, John Wiley Sons.
  • 59. Sabzehei, M., Navazi, M., Ghavidel, M., Hamdi, S.B., 1992. Geological map of Neyriz (scale: 1:250,000). Geological Survey of Iran, Tehran, Iran.
  • 60. Scarrow, J.H., Francisco, Molina, J., Bea, F., Montero, P., Vaughan, A.P.M., 2011. Lamprophyre dikes as tectonic markers of late orogenic transtension timing and kinematics: a case study from the Central Iberian Zone. Tectonics, 30, doi.org/10.1029/2010TC002755
  • 61. Shahabpour, J., 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences, 24: 405-417.
  • 62. Shahbazi, H., Siebe, W., Pourmoafee, M., Ghorbani, M., Sepahi, A.A., Shang, C.K., Vousoughi Abedini, M., 2010. Geochemistry and U-Pb zircon geochronology of the Alvand plutonic complex in Sanandaj-Sirjan Zone (Iran): new evidence for Jurassic magmatism. Journal of Asian Earth Sciences, 39: 668-683.
  • 63. Shaw, D.M., 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta, 34: 237-243.
  • 64. Sheikholeslami, M.R., 2015. Deformations of Palaeozoic and Mesozoic rocks in southern Sirjan, Sanandaj-Sirjan Zone, Iran. Journal of Asian Earth Sciences, 106: 130-149.
  • 65. Sheikholeslami, M.R., Pique, A., Mobayen, P., Sabzehei, M., Bellon, H., Hashem Emami, M., 2008. Tectono-metamorphic evolution of the Neyriz metamorphic complex, Quri-Kor-e-Sefid area (Sanandaj-Sirjan Zone, SW Iran). Journal of Asian Earth Sciences, 31: 504-521.
  • 66. Skolbeltsyn, G., Mellors, R., Gök, R., Türkelli, N., Yetirmishli, G., Sandvol, E., 2014. Upper mantle S wave velocity structure of the East Anatolian-Caucasus region. Tectonics, 33: 207-221.
  • 67. Srivastava, R.K., Chalapathi Rao, N.V., 2007. Petrology, geochemistry and tectonic significance of Paleoproterozoic alkaline lamprophyres from the Jungel valley, Mahakoshal supracrustal belt, central India. Mineralogy and Petrology, 89: 189-215.
  • 68. Stöcklin, J., 1968. Structural history and tectonics of Iran; a review. AAPG Bulletin, 52: 1229-1258.
  • 69. Stöcklin, J., 1977. Structural correlation of the Alpine ranges between Iran and Central Asia. Mémoire Hors-Serie, Société géologique de France, 8: 333-353.
  • 70. Stoneley, R., 1981. The geology of the Kuh-e Dalneshin area of southern Iran, and its bearing on the evolution of southern Tethys. Journal of the Geological Society, 138: 509-526.
  • 71. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publications, 42: 313-345.
  • 72. Thorpe, R.S., 1982. Andesites, Orogenic Andesites and Related Rocks. John Wiley & Sons.
  • 73. Van Hunen, J., Allen, M.B., 2011. Continental collision and slab break-off: a comparison of 3-D numerical models with observations. Earth and Planetary Science Letters, 302: 27-37.
  • 74. Velikoslavinsky, S.D., Krylov, D.P., 2014. Geochemical discrimination of basalts formed in major geodynamic settings. Geotectonics, 48: 427-439.
  • 75. Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59: 1217-1232.
  • 76. Wilson, M, 2007. Igneous Petrogenesis: A Global Tectonic Approach. Springer.
  • 77. Winter, J.D., 2014. Principles of Igneous and Metamorphic Petrology. Pearson Education Limited.
  • 78. Wood, D.A., 1980. The application of Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50: 11-30.
  • 79. Yousefi, S.J., Moradian, A., Ahmadipour, H., 2017. Petrogenesis of Plio-Quaternary basanites in the Gandom Beryan area, Kerman, Iran: geochemical evidence for the low-degree partial melting of enriched mantle. Turkish Journal of Earth Sciences, 26: 284-301.
  • 80. Zor, E., 2008. Tomographic evidence of slab detachment beneath eastern Turkey and the Caucasus. Geophysical Journal International, 175: 1273-1282.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aaea818c-131a-4f51-be95-7df6f24391c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.