PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

General safety concepts used in transport

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ogólne koncepcje bezpieczeństwa wykorzystywane w transporcie
Języki publikacji
EN
Abstrakty
EN
The article presents selected concepts, models and theories of safety known from research and applications in various areas of technology and suitable for use in the field of transport. In particular, attention was paid to cognitively promising in the field of transport safety, and relatively little used research concepts here: Normal Accident Theory (NAT) Ch.Perrow, "Swiss cheese model" /SCh-M/ by J. Reason, concepts of "safe space of action" by J. Rasmussen and R. Amalberti, the concept of High Reliability Organizations /HRO/, or even interpretations of the transport system as a complex system (CS). The main aim of the article was to present some important general safety concepts and show that they can be used to model safety in the field of transport. The article shows that the so-called Geysen's thesis allows for the development of justified safety analogies between transport systems and such systems of technology that have greater scientific and engineering achievements in the field of safety.
PL
W artykule przedstawiono wybrane koncepcje, modele oraz teorie bezpieczeństwa znane z badań i zastosowań w różnych obszarach techniki i nadające się do wykorzystania w dziedzinie transportu. W szczególności zwrócono uwagę na poznawczo obiecujące w dziedzinie bezpieczeństwa transportu, a stosunkowo mało tutaj wykorzystywane koncepcje badawcze, jak: teoria normalnych wypadków /Normal Accident Theory/ autorstwa Ch. Perrowa, model „sera szwajcarskiego” /„Swiss cheese model”/ J. Reasona, koncepcje „bezpiecznej przestrzeni działań” /„safe space of actions”/ J. Rasmussena oraz R. Amalbertiego, koncepcja tzw. organizacji dużych (wysokich) niezawodności /High Reliability Organizations/, czy interpretacje systemów transportowych jako systemów złożonych /complex systems/. Zasadniczym celem artykułu było przedstawienie kilku ważnych ogólnych koncepcji bezpieczeństwa i pokazanie, że można je wykorzystywać do modelowania bezpieczeństwa w dziedzinie transportu. Z artykułu wynika, że tzw. teza Geysena pozwala na opracowywanie uzasadnionych analogii bezpieczeństwa pomiędzy systemami transportu, a takimi systemami techniki, które mają większe osiągnięcia naukowe i inżynierskie w dziedzinie bezpieczeństwa.
Twórcy
  • Kazimierz Pulaski University of Technology and Humanities in Radom, Faculty of Transport, Electrical Engineering and Computer Science, Malczewskiego 29, 26-600 Radom, Poland
Bibliografia
  • [1] Compes P. C. (1990) Fazit un Integration - Konzept und Praxis der Siherheitswissenschaft. Proceedings of 1st World Congress on Safety Science. Köln, Teil 2
  • [2] BS 292 (1991) British Standard EN 292: Safety of Machinery Basic Concepts, General Principles for Design
  • [3] Szymanek A. (2012) Teoria i metodologia zarządzania ryzykiem w ruchu drogowym. Politechnika Radomska, Radom 2012; ISBN 978-83-7351-505-5
  • [4] Szymanek A. (2020) “System Approach in Road Safety Studies“. Communications - Scientific Letters of the University of Zilina, 22(4), 201-210. https://doi.org/10.26552/com.C.2020.4.201-210
  • [5] Hermitte, T. (2012) Review of Accident causation models used in Road Accident Research of the EC FP7 project DaCoTA, D5.9, 21.09.2012
  • [6] Abraha H.H., Liyanage J.P. (2015) “Review of Theories and Accident Causation Models: Understanding of Human-Context Dyad Toward the Use in Modern Complex Systems“. In: Lee W., Choi B., Ma L., Mathew J. (eds) Proceedings of the 7th World Congress on Engineering Asset Management (WCEAM 2012). Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-06966-1_2
  • [7] Heinrich H. W (1931) “Industrial accident prevention: a scientific approach“. McGraw-Hill. OCLC571338960; [Heinrich’s domino model off accident causation - https://risk-engineering.org//concept/Heinrich-domonos]
  • [8] Hollnagel E., (2009) Safer Complex Industrial Environments: A Human Factors Approach. CRC Press. ISBN 978-1-4200-9248-6
  • [9] Hang D., Xi N. (1998) “Accident causation and prevention theories. In: Progress In Safety Science and Technology“. Proceedings of the 98 International Sympodium on Safety Science and Technology. Ed. Zeng Qingxuan et al. Science Press. Beijing/New York, p. 62
  • [10] Szymanek A., (2019) “The concept of using SCh−M and LTSA models to identify management gaps in the Polish road safety system“. Proceedings of the 23rd International Scientific Conference. TRANSPORT MEANS 2019. Sustainability: Research and Solution. Part III, 2019, pp. 1170-1174; ISSN 1822-296 X (print); ISSN 2351-7034 (on-line)
  • [11] Reason J. et al. (1990) “Errors and violations road: A real distinction?“ Ergonomics, 33, pp. 1315‐1322
  • [12] Reason J. (1997) Managing the Risks of Organizational Accidents. Aldershot: Ashgate
  • [13] Salmon P., Regan M., Johnston I. (2006) “Human Error and road transport: Phase two - A framework for an error tolerant road transport system“. Monash University Accident Research Centre Report Documentation Page. Report No. 257; ISBN 0732623278
  • [14] Cotton-Barratt O, Daniel M, Sandberg A. (2020) “Defence in Depth Against Human Extinction: Prevention, Response, Resilience, and Why They All Matter“. [published online ahead of print, 2020 Jan 24]. Glob Policy. 2020. https://doi.org/10.1111/1758-5899.12786
  • [15] Rasmussen J. (1990) “Safety research and the technological development“. Proceedings of 1st World Congress on Safety Science. Köln. Teil 1, pp. 364 – 377
  • [16] Hollnagel, E. (2004) Barriers and accident prevention. Hampshire. England: Ashgate Publishing Ltd.; ISBN 978-1138247352
  • [17] Mandelbrot B. (1965) “Self similar error clusters in communication systems and the concept of conditional stationarity“. IEEE Transactions on Communication Technology. 13(1), 71 – 90; https://doi.org/10.1109/TCOM.1965.1089090
  • [18] Lorenz E.N. (1963) “Deterministic non-periodic flow“. Journal of the Atmospheric Sciences. 20, pp. 130–142; https://doi.org/10.1175/1520-0469(1963)020 <0130:DNF>2.0.CO;2
  • [19] Frazier Ch., Kockelman K. M. (2004) “Chaos Theory and Transportation Systems: An Instructive Example“. Transportation Research Board 83rd Annual Meeting, January 12, 2004, Washington D.C.
  • [20] Jing, Kecen and Liao, Wen-Chi (2017) “The Butterfly Effect of Transport Network Connectivity and Welfare Implication“ (December 17, 2017). http://dx.doi.org/10.2139/ssrn.3089360
  • [21] Buzan T. (1993) The Mind Map Book. London: BBC Books. ISBN 978-0563363736 & Buzan T., Buzan B., (2003) The Mind Map Book, 3 Rev Ed edition. BBC Active. ISBN 9780563487050
  • [22] Cooper D. (1998) Improving safety culture. A practical guide. John Wiley & Sons Ltd.
  • [23] Tee Tze Kiong, Jailani Bin Md Yunos, Baharom Bin Mohammad, Widad Binti Othman, Yee Mei Heong, Mimi Mohaffyza Binti Mohamad (2012) ʺThe Development and Evaluation of the Qualities of Buzan Mind Mapping Moduleʺ, Procedia - Social and Behavioral Sciences, Vol. 59, 17 October 2012, pp. 188-196; https://doi.org/10.1016/j.sbspro.2012.09.264
  • [24] Mulej M. (1992) “Teorije sistemov. Univerza v Mariboru“, Ekonomsko-poslovna fakulteta, Maribor, pp. 18-21
  • [25] Zdenka Zenko, Bojan Rosi, Matjaz Mulej, Tatjana Mlakar, Nastja Mulej (2012) ʺGeneral Systems Theory Completed Up by Dialectical Systems Theoryʺ. Research project that is supported by the Slovenian Public Agency for Research as a basic research project: 1000‐09‐212173, in 2009–2012. Part of this research project was presented at the International Conference on Complex Systems, ICCS12, Agadir, Morocco, 5–6 November 2012 https://doi.org/10.1002/sres.2234
  • [26] Rosi B., Mulej M. (2005) “With More Dialectic Networking Thinking the Slovenian Railway Traffic System Can Become More Competitive in Europe“, Organizacija 38, pp. 169-175
  • [27] Tavcar I. M. (2002) “Strateški management“. Univerza v Mariboru. Ekonomsko-poslovna fakulteta. Inštitut za razvoj managementa. Birografika Bori, Izola, p. 9
  • [28] Kramberger T., Rosi B. (2007) “Do Managers have Enough Quality Information for Decision-Making“. Organizacija, Volume 40, Number 5, pp. 207-217
  • [29] Whitesides G.M., Ismagilov R.F. (1999) “Complexity in Chemistry“. Science 1999, 284 (5411), pp. 89-92, ISSN 1095-9203
  • [30] Turner J. R., Baker R. M. (2019) ʺ Complexity Theory: An Overview with Potential Applications for the Social Sciencesʺ. Systems 7(1), 4; pp. 1-22. https://doi.org/10.3390/systems7010004,
  • [31] Perrow, C. (1986) Normal accidents: living with high risk technologies. New York: Basic Books, 1986. ISBN 978-0691004129
  • [32] Roberts K. H. (1990) “Some characteristics of high-reliability organizations“. Organization Science [online]. 1990, 1(2), p. 160. ISSN 1047-7039, eISSN1526-5455. https://doi.org/10.1287/orsc.1.2.160.
  • [33] Lekka CH. (2011) High reliability organisations - a review of the literature [online]. RR899 Research Report. London: Health and Safety Executive. www.hse.gov.uk/research/rrpdf/rr899.pdf
  • [34] Enya A., Pillay M., Dempsey S. (2018) “A Systematic review on high reliability organisational theory asa safety management strategy in construction“. Safety [online], 4(1), 6. eISSN 2313-576X. https://doi.org/10.3390/safety4010006
  • [35] Perrow C. (1984) Normal Accidents: Living with High-Risk Technologies. New York: Basic Books
  • [36] Hopkins A. (2007) ʺThe Problem of Defining High Reliability Organisationsʺ. Working Paper 51, Faculty of Arts and National Research Centre for OHS Regulation, Australian National University
  • [37] Almeida I. M. (2006) “Systemic approach to accidents and occupational health and safety management“. Interfaces - A Journal on Integrated Management of Occupational Health and the Environment [online]. Art 1; ISSN 1980-0908
  • [38] Le Coze J.-CH. (2015) “1984-2014. Normal accidents. Was Charles Perrow right for the wrong reasons?“ Journal of Contingencies and Crisis Management [online]. 2015, 23(4), pp. 275-286. https://doi.org/10.1111/1468-5973.12090
  • [39] Rasmussen J. (1997) “Risk management in a dynamic society: a modelling problem“, Safety Science, Volume 27, Issues 2–3, 1997, pp. 183-213. ISSN 0925-7535, https://doi.org/10.1016/S0925-7535(97)00052-0
  • [40] Amalberti R. (2001) “The paradoxes of almost totally safe transportation systems“. Safety Science, Vol., Issues 2–3, 2001, pp. 109-126, ISSN 0925-7535; https://doi.org/10.1016/S0925-7535(00)00045-X
  • [41] Leveson N.G. (2002) A New Approach To System Safety Engineering. Aeronautics and Astronautics Massachusetts Institute of Technology; Available from: http://ocw.mit.edu
  • [42] Leveson N.G. (2004) “A New Accident Model for Engineering Safer Systems“. Safety Science, 42(4), pp. 237-270
  • [43] Szymanek A. (2018) “Theory of complex systems and the high reliability organization concept in transport safety modeling“. In: 22nd International Scientific Conference Transport Means 2018, Proceedings. Part II. 2018. ISSN 1822-296X, eISSN 2351-7034, pp. 828-833
  • [44] Geysen W. J. (1990) “The Structure of Safety Science: Definitions, Goals and Instruments“. Proceedings of 1st World Congress on Safety Science. Köln, Teil 1, pp. 44 – 80
  • [45] Kuhlmann A. (1986) Introduction to Safety Science. Springer-Verlag, New York – Berlin – Heidelberg – Tokyo. ISBN 978-1-4613-8596-7
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aae5ff07-15bf-4ce7-bdb8-f594120b16e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.