PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Study on force reduction mechanism in ultrasonic assisted grinding based on single-grain scratching

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultrasonic vibration-assisted grinding (UAG) has been proven to be a promising grinding ability improvement technique due to the grinding force reduction. However, the reduction mechanism is still unclear due to the lack of knowledge on material softening and grain - work piece contact conditions in UAG. In this paper, we present a numerical and experimental study on ultrasonic vibration-assisted scratching (UAS) to understand the force reduction mechanism for UAG from a single-grain perspective. Based on crystal plasticity theory and dislocation density model, the constitutive model for ultrasonic-assisted deformation is established, in which the influence of vibration amplitude and strain rate is considered. To further study the acoustic softening effect, the ultrasonic assisted tensile test is conducted. The finite element model for UAS is developed with the kinematic analysis and the consideration of acoustic softening effect. The comparison between the simulated and experimental results indicates that the process force reduction under ultrasonic vibration can be attributed to (1) the reduction of contact area due to the path interference effect and (2) the yield stress reduction due to the acoustic softening effect. This research can deepen the understanding of the beneficial effect of ultrasonic vibration in UAG and offers new insight for studying other ultrasonic-assisted machining method.
Rocznik
Strony
art. no. e80, 1--14
Opis fizyczny
Bibliogr. 29 poz., il., tab., wykr.
Twórcy
autor
  • State Key Laboratory for High Performance Complex Manufacturing, Central South University, Changsha, China
autor
  • State Key Laboratory for High Performance Complex Manufacturing, Central South University, Changsha, China
autor
  • State Key Laboratory for High Performance Complex Manufacturing, Central South University, Changsha, China
autor
  • State Key Laboratory for High Performance Complex Manufacturing, Central South University, Changsha, China
autor
  • CRRC QINGDAO SIFANG Co., Ltd., Qingdao, Shandong, China
autor
  • State Key Laboratory for High Performance Complex Manufacturing, Central South University, Changsha, China
Bibliografia
  • 1. Li C, Zhang F, Meng B, Liu L, Rao X. Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SIC Ceramics. Ceram Int. 2017;43(3):2981-93. https://doi.org/10.1016/j.ceramint.2016.11.066.
  • 2. Zhou W, Tang J, Shao W. Modelling of surface texture and parameters matching considering the interaction of multiple rotation cycles in ultrasonic assisted grinding. Int J Mech Sci. 2020;166: 105246. https://doi.org/10.1016/j.ijmecsci.2019.105246.
  • 3. Li D, Tang J, Chen H, Shao W. Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel. Int J Adv Manuf Technol. 2018;101(5-8):1467-79. https://doi.org/ 10.1007/s00170-018-2929-2.
  • 4. Kan Z, Wenhe L, Lianjun S, Heng M. Investigation on grinding temperature in ultrasonic vibration-assisted grinding of Zirconia Ceramics. Mach Sci Technol. 2019;23(4):612-628. https://doi.org/10.1080/10910344.2019.1575405.
  • 5. Nomura M, Wu Y, Kuriyagawa T. Investigation of internal ultra sonically assisted grinding of small holes: Effect of ultrasonic vibration in truing and dressing of small CBN grinding wheel. Mech Sci Technol. 2007;21(10):1605-11. https://doi.org/10.1007/bf03177382.
  • 6. Lakhdari F, Bouzid D, Belkhir N, Herold V. Surface and subsurface damage in Zerodur® glass ceramic during ultrasonic assisted grinding. Int J Adv Manuf Technol. 2016;90(5-8):1993-2000. https://doi.org/10.1007/s00170-016-9551-y.
  • 7. Wang Y, Lin B, Wang S, Cao X. Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing. Int J Mach Tools Manuf. 2014;77:66-73. https://doi. org/10.1016/j.ijmachtools.2013.11.003.
  • 8. Wen Y, Tang J, Zhou W, Zhu C. Study on contact performance of ultrasonic-assisted grinding surface. Ultrasonics. 2019;91:193-200. https://doi.org/10.1016/j.ultras.2018.08.009.
  • 9. Wang Q, Zhao W, Liang Z, Wang X, Zhou T, Wu Y, Jiao L. Investigation of diamond wheel topography in elliptical ultrasonic assisted grinding (EUAG) of mono-crystal Sapphire using Fractal Analysis Method. Ultrasonics. 2018;84:87-95. https://doi.org/10. 1016/j.ultras.2017.10.012.
  • 10. Zhang T, Jiang F, Yan L, Xu X. Research on the size effect of specific cutting energy based on numerical simulation of single grit scratching. J Manuf Sci Eng DOI. 2018;10(1115/1):4039916.
  • 11. Anderson D, Warkentin A, Bauer R. Experimental and numerical investigations of single abrasive-grain cutting. Int J Mach Tools Manuf. 2011;51(12):898-910. https://doi.org/10.1016/j.ijmac htools.2011.08.006.
  • 12. Zheng F, Kang R, Dong Z, Guo J, Liu J, Zhang J. A theoretical and experimental investigation on ultrasonic assisted grinding from the single-grain aspect. Int J Mech Sci. 2018;148:667-675. https://doi.org/10.1016/j.ijmecsci.2018.09.026.
  • 13. Li Z, Yuan S, Ma J, Shen J, Batako ADL. Study on the surface formation mechanism in scratching test with different ultrasonic vibration forms. J Mater Process Technol. 2021;294: 117108. https://doi.org/10.1016/j.jmatprotec.2021.117108.
  • 14. Qiao G, Yi S, Zheng W, Zhou M. Material removal behavior and crack-inhibiting effect in ultrasonic vibration-assisted scratching of silicon nitride ceramics. Ceram Int. 2022;48(3):4341-51. https://doi.org/10.1016/j.ceramint.2021.10.229.
  • 15. Sun G, Shi F, Zhao Q, Ma Z, Yang D. Material removal behaviour in axial ultrasonic assisted scratching of Zerodur and ULE with a Vickers indenter. Ceram Int. 2020;46(10):14613-24. https://doi. org/10.1016/j.ceramint.2020.02.262.
  • 16. Zhang G, Wu G, Zeng Y, Xie G, Liu D, Luo D, Wang J, Zhang K. Discrete element simulation of the ultrasonic-assisted scratching process of AL2O3 ceramic under compressive pre-stress. Ceram Int. 2020;46(18):29090-100. https://doi.org/10.1016/j.ceramint. 2020.08.081.
  • 17. Wang C, Chen J, Fang Q, Liu F, Liu Y. Study on brittle material removal in the grinding process utilizing theoretical analysis and numerical simulation. Int J Adv Manuf Technol. 2016;87(9-12):2603-14. https://doi.org/10.1007/s00170-016-8647-8.
  • 18. Duan N, Yu Y, Wang W, Xu X. Analysis of grit interference mechanisms for the double scratching of mono-crystalline silicon carbide by coupling the FEM and SPH. Int J Mach Tools Manuf. 2017;120:49-60. https://doi.org/10.1016/j.ijmachtools.2017.04. 012.
  • 19. Wang X, Qi Z, Chen W. Study on constitutive behavior of TI45NB alloy under transversal ultrasonic vibration-assisted compression. Arch of Civil Mech Eng. 2021. https://doi.org/10.1007/ s43452-021-00186-7.
  • 20. Wang X, Qi Z, Chen W. Investigation of acoustic-plastic constitutive modeling based on Johnson-Cook Model and numerical simulation application. Arch Civil Mech Eng. 2021. https://doi.org/10.1007/s43452-021-00228-0.
  • 21. Yao Z, Kim G-Y, Faidley LA, Zou Q, Mei D, Chen Z. Acoustic softening and hardening of aluminum in high-frequency vibration-assisted micro/MESO forming. Mater Manuf Processes. 2013;28(5):584-588. https://doi.org/10.080/10426914.2012.667890.
  • 22. Siddiq A, Sayed TE. A thermo-mechanical crystal plasticity constitutive model for ultrasonic consolidation. Comput Mater Sci. 2012;51(1):241-251. https://doi.org/10.1016/j.commatsci.2011.07.023.
  • 23. Siddiq A, El Sayed T. Ultrasonic-assisted manufacturing processes: variational model and numerical simulations. Ultrasonics. 2012;52(4):521-9. https://doi.org/10.1016/j.ultras.2011.11.004.
  • 24. Wang X, Wang C, Liu Y, Liu C, Wang Z, Guo B, Shan D. An energy based modeling for the acoustic softening effect on the Hall-Petch behavior of pure titanium in ultrasonic vibration assisted micro-tension. Int J Plast. 2021;136: 102879. https://doi. org/10.1016/j.ijplas.2020.102879.
  • 25. Krishnaswamy H, Kim MJ, Hong S-T, Kim D, Song J-H, Lee M-G, Han HN. Electroplastic behaviour in an aluminium alloy and dislocation density based modelling. Mater Des. 2017;124:131-142. https://doi.org/10.1016/j.matdes.2017.03.072.
  • 26. Estrin Y. Dislocation theory based constitutive modelling: foundations and applications. J Mater Process Technol. 1998;80-81:33-9. https://doi.org/10.1016/s0924-0136(98)00208-8. 27. Krausz AS, Krausz K. Unifed constitutive laws of plastic deformation. Academic Press; 1996.
  • 28. Zhou W, Tang J, Chen H, Shao W. A comprehensive investigation of surface generation and material removal characteristics in ultrasonic vibration assisted grinding. Int J Mech Sci. 2019;156:14-30. https://doi.org/10.1016/j.ijmecsci.2019.03.026.
  • 29. Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech. 1985;21(1):31-48. https://doi.org/10. 1016/0013-7944(85)90052-9.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aadee446-d6f3-4681-a042-bf21130c08e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.