PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sugar Palm Starch/Chitosan Bionanocomposite Films Incorporated with Anthocyanin and Curcumin – Thermal Properties and Release Kinetics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The packaging industry responding to growing consumer demands for product safety, seeks active packaging that allows controlled antioxidant release through incorporating anthocyanin, curcumin, cinnamaldehyde, and other polyphenolic compounds to enhance functional properties of the film antimicrobial interfacial interaction. The research focuses on exploring the impact of adding curcumin and anthocyanin to sugar palm starch/chitosan bionanocomposite films, specifically examining the release kinetics of these bioactive compounds. The biocomposite film with added curcumin exhibits a smoother surface compared to the anthocyanin-based film. Although the thermal stability of the CH/SPS matrix remains unaffected by the addition of anthocyanin and curcumin, the inclusion of these compounds significantly reduces the melting enthalpy of the CH/SPS matrix. Specifically, the addition of curcumin decreases it from 142.96 J/g to 23.43 J/g, and the addition of anthocyanin reduces it to 33.22 J/g. Anthocyanin release from the CH/SPS matrix into water conforms to the Kosmeye-Peppas model (R2 = 0.9808, n = 0.1177), while the release kinetics of curcumin compounds adhere to the Higuchi model (R2 = 0.9968). These findings provide advantageous insights that potentially have implications for a variety of applications, particularly in areas such as sustainable food packaging.
Rocznik
Strony
300--308
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Postgraduate Program, Department of Science Education, Universitas Syiah Kuala, Darussalam, 23111, Banda Aceh, Indonesia
  • Department of Chemistry Education, Universitas Syiah Kuala, Darussalam, 23111, Banda Aceh, Indonesia
  • Department of Geophysical Engineering, Universitas Syiah Kuala, Darussalam, 23311, Banda Aceh, Indonesia
autor
  • Department of Physics Education, Universitas Syiah Kuala, Darussalam, 23111, Banda Aceh, Indonesia
Bibliografia
  • 1. Aliabbasi, N., Fathi, M., Emam-Djomeh, Z. 2021.Curcumin: A promising bioactive agent for application in food packaging systems, Polymers, 9(4), 10550520.
  • 2. Alinaqi, Z., Khezri, A., Rezaeinia, H. 2021. Sustained release modeling of clove essential oil from the structure of starch-based bio-nanocomposite film reinforced by electrosprayed zein nanoparticles, International Journal of Biological Macromolecules, 173, 193–202.
  • 3. Amaregouda, Y., Kamanna, K, Gasti, T. 2022. Fabrication of intelligent, active films based on chitosan / polyvinyl alcohol matrices containing Jacaranda cuspidifolia anthocyanin for real-time monitoring of fish freshness, International Journal of Biological Macromolecules, 218, 799–815.
  • 4. Bukit, N., Sinulingga, K., Abd Hakim, S., Sirait, M., Bukit, B.F. 2023. Mechanical and thermal properties of HDPE thermoplastic with oil palm boiler ash nano filler, Journal of Ecological Engineering, 24(9), 355–363.
  • 5. Cao, T.L, Song, K.B. 2019. Active gum karaya/Cloisite Na+ nanocomposite films containing cinnamaldehyde, Food Hydrocolloids, 89, 453–460.
  • 6. Carloz-Salazar, M.J., Valderrama-Negron, A.C. 2017. Release of anthocyanins from chitosan films cross-linked with sodium tripolyphosphate, Revista de la Sociedad quimica del Peru, 83(1), 115–125.
  • 7. Cheng, M., Yan, X., Cui, Y., Han, M., Wang, Y., Wang, J., Zhang, R., Wang, X. 2022. Characterization and release kinetics study of active packaging films based on modified starch and red cabbage anthocyanin extract, Polymers, 14, 1214.
  • 8. Contardi, M., Fadda, M., Isa, V., Louis, Y.D., Madaschi, A., Vencato, S., Montalbetti, L., Galli, P., Athanassiou, A., Montano, S. 2023. Biodegradable zein-based biocomposite films for underwater delivery of curcumin reduce thermal stress effects in corals, ACS Applied Materials & Interfaces, 15(28), 33916–33931.
  • 9. Dai, L., Zhang, J., Cheng, F. 2019. Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. International Journal of Biological Macromolecules, 132, 897–905.
  • 10. Filho, J.G.O., Egea, M.B. 2022. Edible bioactive film with curcumin: A potential “functional” packaging?, International Journal of Molecular Sciences, 23, 5638.
  • 11. Frida, E., Bukit, N., Sinuhaji, P., Bukit, F.R.A., Bukit, B.F. 2023. New material nanocomposite thermoplastic elastomer with low cost hybrid filler oil palm boiler ash/carbon black, Journal of Ecological Engineering, 24(2), 302–308.
  • 12. Hasan, M., Khaldun, I., Zatya, I., Rusman, R., Nasir, M. 2023. Facile fabrication and characterization of an economical active packaging film based on corn starch–chitosan biocomposites incorporated with clove oil, Journal of Food Measurement and Characterization, 17, 306–316.
  • 13. Hasan, M., Rahmayani,R.F.I., Hazi, W.R., Rusman. 2022. Release kinetic polyphenol of active edible sago starch-chitosan film carrying extra virgin olive oil, Rasayan Journal of Chemistry, 15(4), 2534–2538.
  • 14. Hezma, A.M., Abdelrazzak, A.B., El-Bahy, G.S. 2019. Preparation and spectroscopic investigations of hydroxyapatite-curcumin nanoparticles-loaded polylactic acid for biomedical application, Egyptian Journal of Basic and Apllied Sciences, 6(1), 1–9.
  • 15. Ilyas, R.A., Sapuan, R.M., Ibrahim, R., Abral, H., Ishak, M.R., Zainuddin, E.S., Atikah, M.S.N., Ansari, M.N.M., Syafri, E., Asrofi, M., Sari, N.H., Jumaidin, R. 2019. Effect of sugar palm nanofibrillated cellulose concentrations on morphological, mechanical and physical properties of biodegradable films based on agro-waste sugar palm (Arenga pinnata (Wurmb.) Merr) starch, Journal of Materials Research and Technology, 8(5), 4819–4830.
  • 16. Jamroz, E., Janik, M., Marangoni, L., Vieira, R.P., Tkaczewska, J., Kawecka, A., Szuwarzynski, M., Mazur, T., Jasinska, J.M., Krzysciak, P., Juszczak, L. 2022. Double-layered films based on furcellaran, chitosan, and gelatin hydrolysates enriched with agnps in yerba mate extract, montmorillonite, and curcumin with rosemary essential oil, Polymers, 4(20), 4283.
  • 17. Jiang, X., Guan, Q., Feng, M., Wang, M., Yan, N., Wang, M., Gui, Z. 2019. Preparation and pH controlled release of Fe3O4/anthocyanin magnetic biocomposites, Polymers, 11, 2077.
  • 18. Jenifer, J., Upputuri, R.T.P. 2022. In vitro release mechanism and cytotoxic behavior of curcumin loaded casein nanoparticles, Brazilian Journal of Pharmaceutical Sciences, 58, e19801
  • 19. Kuai, L., Liu, F., Chiou,B-S., Roberto, J.A-V. 2021. Controlled release of antioxidants from active food packaging: A review. Food Hydrocolloids, 120, 106992.
  • 20. Kumar, S., Mukherjee, A., Dutta, J. 2020. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives, Trends in Food Science & Technology, 97, 196–209.
  • 21. Li, N., Zhou, Z., Wu, F., Lu, Y., Jiang, D., Zhong, L., Xie, F. 2022. Development of pH-indicative and antimicrobial films based on polyvinyl alcohol/starch incorporated with ethyl lauroyl arginate and mulberry anthocyanin for active packaging, Coatings, 12, 1392.
  • 22. Liu, J., Huang J., Ying, Y., Hu, L., Hu, Y. 2021. pH-sensitive and antibacterial films developed by incorporating anthocyanins extracted from purple potato or roselle into chitosan/polyvinyl alcohol/nano-ZnO matrix: Comparative study, International Journal of Biological Macromolecules, 178, 104–112.
  • 23. Ma, Y., Zhao, H., Ma, Q., Cheng, D., Zhang, Y., Wang, W., Wang, J., Sun, J. 2022. Development of chitosan/potato peel polyphenols nanoparticles driven extended-release antioxidant films based on potato starch, Food Packaging and Shelf Life, 31, 100793.
  • 24. Mousa, S.A., Sapuan, S.M., Harussani, M.M., Jamal, T., Azri, M.A.M, Ilyas, R.A., Siddiqui, M.U., Rafin, T. 2023. Development and characterization of sugar palm (Arenga pinnata (Wurmb. Merr)) fiber reinforced cassava (Manihot esculenta) starch biopolymer composites, Journal of Natural Fibers, 20(2), 2259103.
  • 25. Mwema, F.M., Oladijo, O.P., Sathiaraj, T.S., Akinlabi, E.T. 2018. Atomic force microscopy analysis of surface topography of pure thin aluminium films, Material Research Express, 5, 046416.
  • 26. Nazrin, A., Sapuan, S.M., Zuhri, M.Y.M., Tawakkal, I.S.M.A., Ilyas, R.A. 2021. Water barrier and mechanical properties of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch (TPS)/poly(lactic acid) (PLA) blend bionanocomposites, Nanotechnology Reviews, 10(1), 431–442.
  • 27. Qin, Y., Liu, Y., Yuan, L., Yong, H., Liu, J. 2019. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract, Food Hydrocolloids, 96, 102–111.
  • 28. Rossa, V., Monteiro, F.L., da Costa, V.S., Tai, S.E., Gomes da Costa, M.V., Carvalho, A., Castella, P.S., de Carvalho, d.S.F., Ferreira, V., Conte, J.C., de Melo, L.T. 2022. Nanocomposites based on the graphene family for food packaging: historical perspective, preparation methods, and properties, RSC Advances, 12(22), 14084–14111.
  • 29. Roy, S., Rhim, J-W. 2020. Preparation of bioactive functional poly(lactic acid)/curcumin composite film for food packaging application, International Journal of Biological Macromolecules, 162, 1780–1789.
  • 30. Shahbazi, M., Rajabzadeh, G., Ahmadi, S.J. 2017. Characterization of nanocomposite film based on chitosan intercalated in clay platelets by electron beam irradiation, Carbohydrate Polymers, 157, 226–235.
  • 31. Sirait, M., Sinulingga, K., Siregar, N. 2023. Characterization of nanocomposite mixture polyvinyl alcohol and rice husk ash, Journal of Ecological Engineering, 24(11), 268–273.
  • 32. Syarifuddin, S.H., Hayatun, A., Ahmad, A., Taba, P., Fauziah, S., Sondari, D., Karim, H., Irfandi, S. 2023. Synthesis and its application as packaging of bioplastic from rice huck cellulose citrate using chitosan and sorbitol plasticizers, International Journal of Design & Nature and Ecodynamics, 18(2), 435–441.
  • 33. Talon, E., Trifkovic, K.T., Vargas, M., Chiralt, A., Gonzalez-Martinez, C. 2017. Release of polyphenols from starch-chitosan based films containing thyme extract, Carbohydrate Polymers, 175, 122–130.
  • 34. Viscusi, G., Gorrasi, G. 2021. Gelatin beads/hemp hurd as ph sensitive devices for delivery of eugenol as green pesticide. Journal of Polymer and the Environment, 29, 3756–3769.
  • 35. Wojcik-Pastuszka, D., Krzak, J., Macikowski, B., Berkowski, R., Osinski, B., Musial, W. 2019. Evaluation of the release kinetics of a pharmacologically active substance from model intra-articular implants replacing the cruciate ligaments of the knee, Materials, 12(8), 1202.
  • 36. Wu, C., Li, Y., Du, Y., Wang, L., Tong, C., Hu, Y., Pang, J., Yan, Z. 2019. Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging, Food Hydrocolloids, 89, 682–690.
  • 37. Yulianto, Julinawati, Fathana, H., Rahmi. 2023. Fabrication and characterization of chitosan film incorporated with ZnO and patchouli oil for food packaging, International Journal of Design & Nature and Ecodynamics, 18(5), 1189–1194.
  • 38. Zhang, J., Huang, X., Shi, J., Liu, L., Zhang, X., Zou, X., Xiao, J., Zhai, X., Zhang, D., Li, Y., Shen, T. 2021. A visual bi-layer indicator based on roselle anthocyanins with high hydrophobic property for monitoring griskin freshness, Food Chemistry, 355, 129575.
  • 39. Zhao, S., Chen, S., Ren, S., Li, G., Song, K., Guo, J., Liu, S., He, J., Zhou, X. 2023. Preparation and performance of pueraria lobata root powder/polylactic acid composite films, Journal of Renewable Materials, 11(6), 2531–2553.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aad0c6f0-de71-4d0d-b206-bf7ceda0fbb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.