PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predictive model of seismic vibrations’ peak value induced by multi-face blasting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The seismicity level induced by blasting in the Polish copper mines is very important inlight of the efficiency of active rockburst prevention and safe conduct of blasting operations in the vicinity of the mining infrastructure such as shafts, workings, or function chambers (e.g., workshops, storages, etc.). Knowledge of the seismic vibrations' peak value might be the basis for designing blasting works in a way that ensures desired seismic effect. However, current experiences show that Peak Particle Velocity prediction models developed so far do not apply to multi-face blasting, where there are many vibrations’ sources at the same time dotted across the mining panel. This paper presents the assumptions of a new empirical model with validation data gathered in the underground trials of group blasting. This new method allows for determining the vibration level generated by firing a single face and the value of amplitude amplification resulting from the increased number of faces fired simultaneously in the group. Preliminary analysis shows that this newly developed predictive model is characterized by a high level of reliability and therefore was applied to assess the effectiveness of blasting works in the selected panel in one of the mines belonging to KGHM Polska Miedz S.A.
Rocznik
Strony
248--256
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • KGHM Cuprum Ltd., Research & Development Centre, Poland
  • KGHM Cuprum Ltd., Research & Development Centre, Poland
  • KGHM Cuprum Ltd., Research & Development Centre, Poland
  • KGHM Cuprum Ltd., Research & Development Centre, Poland
  • KGHM Polska Miedz S.A., Rudna Mine, Poland
Bibliografia
  • [1] Butra J, Kudełko J. Rockburst hazard evaluation and prevention methods in Polish copper mines. 2011. https://depot. ceon.pl/handle/123456789/488.
  • [2] Baranowski P, Damaziak K, Mazurkiewicz Ł, Mertuszka P, Pytel W, Małachowski J, et al. Destress blasting of rock mass: multiscale modelling and simulation. Shock Vib 2019:1-11. https://doi.org/10.1155/2019/2878969.
  • [3] Gogolewska AB, Kowalczyk M. Assessment of seismic hazard in relation to rock-burst prevention modifications in KGHM polish copper JSC polkowice - sieroszowice mine, Poland. IOP Conf Ser Earth Environ Sci 2019;221:012086. https://doi.org/10.1088/1755-1315/221/1/012086.
  • [4] Pytel W, Mertuszka P. Blasting parameters alternate selection as a tool for elastic wave effect amplification at potentially instable locations within main roof strata. 2019. https://doi.org/10.48550/ARXIV.1903.04813.
  • [5] Gogolewska AB, Smolak D. Seismic activity reduction with the use of blasting and passive seismic tomography control, a case study from copper ore mine, Poland. Acta Geophys 2021;69(2):681-9. https://doi.org/10.1007/s11600-021-00546-0.
  • [6] Fuławka K, Mertuszka P, Pytel W, Szumny M, Jones T. Seismic evaluation of the destress blasting efficiency. J Rock Mech Geotech Eng 2022. https://doi.org/10.1016/j.jrmge.2021.12.010. S1674775522000130.
  • [7] Mertuszka P, Fuławka K, Stolecki L, Szumny M. Seismic effect of group winning blasting, case study from A polish copper mine. 2019. https://doi.org/10.48550/ARXIV.1903.04816.
  • [8] Mertuszka P, Szumny M, Fuławka K, Kondoł P. Novel approach for the destress blasting in hard rock underground copper mines. Journal of Sustainable Mining 2022;21(2): 141-54. https://doi.org/10.46873/2300-3960.1352.
  • [9] Dowding CH. Blast vibration monitoring and control. Prentice-Hall; 1985.
  • [10] Persson P-A, Holmberg R, Lee J. Rock blasting and explosives engineering. CRC Press; 1994.
  • [11] Tripathy GR, Gupta ID. Prediction of ground vibrations due to construction blasts in different types of rock. Rock Mech Rock Eng 2002;35(3):195-204. https://doi.org/10.1007/s00603-001-0022-9.
  • [12] Mesec J, Kovac I, Soldo B. Estimation of particle velocity based on blast event measurements at different rock units. Soil Dynam Earthq Eng 2010;30(10):1004-9. https://doi.org/10.1016/j.soildyn.2010.04.011.
  • [13] Parida A, Mishra MK. Blast vibration analysis by different predictor approaches- a comparison. Procedia Earth and Planet Science 2015;11:337-45. https://doi.org/10.1016/j.proeps.2015.06.070.
  • [14] Mutke G. Peak particle velocity as an indicator of dynamic load exerted on the support of underground workings. Acta Geodyn Geomater 2016:367-78. https://doi.org/10.13168/AGG.2016.0019.
  • [15] Aloui M, Bleuzen Y. Ground vibrations and air blast effects induced by blasting in open pit mines: case of metlaoui mining basin, Southwestern Tunisia. J Geol Geophys 2016; 5(3). https://doi.org/10.4172/2381-8719.1000247.
  • [16] Pytel W. Seismic peak partcile velocity and acceleration response to mining faces firing in A light of numerical modeling and underground measurements. 18th international multidisciplinary scientific GeoConference SGEM2018. 2018, June 20. https://doi.org/10.5593/sgem2018/1.3/S03.086.
  • [17] Wodecki J, Michalak A, Stefaniak P, Wyłomanska A, Zimroz R. Combination of Kolmogorov-smirnov statistic and time-frequency representation for P-wave arrival detection in seismic signal. In: Chaari F, Leskow J, Zimroz R, Wyłomanska A, Dudek A, editors. Cyclostationarity: theory and methods - IV, vol. 16. Springer International Publishing; 2020. p. 166-74. https://doi.org/10.1007/978-3-030-22529-2_9.
  • [18] Kadiri I, Tahir Y, Iken O, Fertahi S Ed-Dîn, Agounoun R. Experimental and statistical analysis of blast-induced ground vibrations (bigv) prediction in Senegal's quarry. Studia Geotechnica Mech 2019;41(4):231-46. https://doi.org/10.2478/sgem-2019-0025.
  • [19] Mohammadnejad M, Gholami R, Ramezanzadeh A, Jalali S. Prediction of blast-induced vibrations in limestone quarries using Support Vector Machine. J Vib Control 2011;18(9): 1322-9. https://doi.org/10.1177/1077546311421052.
  • [20] Kumar R, Choudhury D, Bhargava K. Determination of blast- induced ground vibration equations for rocks using mechanical and geological properties. J Rock Mech Geotech Eng 2016; 8(3):341-9. https://doi.org/10.1016/j.jrmge.2015.10.009.
  • [21] Murmu S, Maheshwari P, Verma HK. Empirical and probabilistic analysis of blast-induced ground vibrations. Int J Rock Mech Min Sci 2018;103:267-74. https://doi.org/10.1016/ j.ijrmms.2018.01.038.
  • [22] Agrawal H, Mishra A. Modified scaled distance regression analysis approach for prediction of blast-induced ground vibration in multi-hole blasting. J Rock Mech Geotech Eng 2018;11(1):202-7. https://doi.org/10.1016/j.jrmge.2018.07.004.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aace8213-7fc9-491e-9e77-a2ea4203348e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.