PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effectiveness of Measures Taken to Protect Waters by Example of Soda Production Plant in Inowrocław

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The "Soda Mątwy" plant in Inowrocław produces light and heavy soda ash by means of the Solvay method, and the production process is associated with the formation of highly saline waste, which can adversely affect all elements of the environment. In view of the existing threats, attempts are undertaken to limit the quantity and improve the quality of post-production sewage. The aim of the study is to determine the effectiveness of activities to protect the water in the area of the soda production plant in Inowrocław. The assessment of their effectiveness was based on the analysis of the current level of chloride concentration reduction at 4 measurement points around the plant and determination of the trend for further changes. In all piezometers, the concentration of chloride ions has decreased and showed the same tendency in subsequent years, which allows draw conclusions confirming high effectiveness of the activities related to water protection.
Słowa kluczowe
Rocznik
Strony
144--149
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Bialystok Technical University, Faculty of Civil and Environmental Engineering, ul. Wiejska 45A, 15-350 Białystok, Poland
autor
  • Bialystok Technical University, Faculty of Civil and Environmental Engineering, ul. Wiejska 45A, 15-350 Białystok, Poland
Bibliografia
  • 1. Effler S.W., Matthews D.A. 2003. Impacts of a Soda Ash Facility on Onondaga Lake and the Seneca River, NY. Lake and Reservoir Management, 19(4), 285–306.
  • 2. Gliniak M., Pawul M., Sobczyk W. 2014. Impact of the transport and postindustrial landfills of Cracow Soda Works "Solvay" on the status and quality of water in Wilga river in Krakow. Logistyka, 4, 4295–4302. (in Polish)
  • 3. Harat A. Grmela A. 2008. Impact of mine water from The Upper Silesian Coal Basin areas on change quality of water in Olza river in years 2000–2007. Natural Environment Monitoring, 9, 57–62.
  • 4. Kasikowski T., Buczkowski R., Cichosz M. 2008. Utilization of synthetic soda-ash industry by-products. International Journal of Production Economics, 112, 971–984. (in Polish)
  • 5. Kasikowski T., Buczkowski R., Cichosz M., Lemanowska E. 2007. Combined distiller waste utilization and combustion gases desulphurisation method. The case study of soda-ash industry. Resources, Conservation and Recycling, 51, 665–690. (in Polish)
  • 6. Małecki Z.J., Wira J., Moshynsky V., Małecka I. 2016. The threat of worsening the quality of surface and underground waters caused by an unrecultivated waste dumping site in Tłokinia Kościelna near Kalisz. Inżynieria Ekologiczna, 46, 77–87 (in Polish).
  • 7. Matthews D.A., Effler S.W. 2003. Decreases in pollutant from residual soda ash production waste. Water, Air, and Soil Pollution, 146, 55–73.
  • 8. Mosiej J., Komorowski H., Kaczmarczyk A., Suska A. 2007. Effect of pollutants discharged from Łódź conurbation on quality of water in Ner and Warta rivers. ACTA Scientiarum Polonorum, 6(2), 19–30 (in Polish).
  • 9. Pietrucin D., Czop M. 2015. Groundwater contamination by organochlorine compounds in the area of industrial waste dump ”Zielona” in Bydgoszcz City. Polish Geological Review 63 (10/2), 997–1001 (in Polish).
  • 10. Policht-Latawiec A., Kanownik W., Łukasik D. 2013. Effect of point source pollution on the san river Water quality San. Infrastructure and Ecology of Rural Areas 1/IV/2013, 253–269 (in Polish).
  • 11. Rabiej M. 2012. Statistic with the Statistica program. Helion, Gliwice.
  • 12. Şener S. 2008. Use of solid wastes of the soda ash plant as an adsorbent for the removal of anionic dyes: Equilibrium and kinetic studies. Chemical Engineering Journal, 138, 207–214.
  • 13. Siwiec T., Michel M.M., Reczek L. 2016. The influence of aeration on the change of corrosive aggressiveness of groundwater in relation to concrete and steel. Acta Scientiarum Polonorum Architectura, 15 (1), 95–105 (in Polish).
  • 14. Polish Standard PN-EN ISO 5667:2008 Water quality. Sampling.
  • 15. Steinhauser G. 2008. Cleaner production in the Solvay Process: general strategies and recent developments. Journal of Cleaner Production, 16, 833–841.
  • 16. Updated The National Programme for Municipal Waste Water Treatment (NPMWWT) – AKPOŚK 2017 (in Polish).
  • 17. Urbańska J., Urbański K. 2012. Selected Aspects of Reclamation of Soda Waste Landfill Sites. Geomatics and Environmental Engineering, 6(4), 83–90 (in Polish).
  • 18. Vangelas K.M. Looney B.B., Early T.O., Gilmore T., Chapelle F.H., Adams K.M., Sink C.H. 2006. Monitored natural Attenuation of Clorinated Solvents – Moving beyond reductive dechlorination. Remediation, summer 2006, 5–23.
  • 19. Wiater J. 2011. Influence of municipal landfill site on the ground water quality. Ecological Engineering, 26, 133–146 (in Polish).
  • 20. Wychowaniak D., Koda E. 2014. Assessment of the soil – water system quality in the vicinity of old landfill with a vertical barrier. Remediation, Reclamation and Revitalization. PZITS Oddział Wielkopolski, Poznań (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aace0334-6932-4c63-884e-0ab667d1a9f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.