PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Investigation of longitudinal bending distortion of a double-side edge welded fin plate by study of plastic zones

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Okerblom’s theory of double-side welded structures states that the resultant longitudinal bending distortion will not be zero in structures that are welded with equal heat input on both the sides of centre of gravity axis, on account of smaller plastically deformed zone near the second weld. However, investigations have not been performed thus far in exploring why such a phenomenon happens. This is the gap that this research work addresses. Accordingly, investigations were made by performing welding on both the edges of a rectangular fin plate using gas metal arc welding (GMAW) both by experimentation and by finite element (FE) simulation using SYSWELD software. Von Mises stress plots and transient strain plots of few elements near the first and second edge of the fin plate were analysed to study their relative influence in causing the plastic deformation of the elements. The analysis showed that the smaller size of the plastic zone formed near the second edge weld was mainly due to the presence of residual tensile strain on the second side elements, formed as result of the weld laid on the first edge of the fin plate.
Rocznik
Strony
art. no. e88, 2023
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • Welding Research Institute, Bharat Heavy Electricals Limited, Trichy 620014, India
  • Department of Production Engineering, National Institute of Technology, Tiruchirappalli 620015, India
  • Welding Research Institute, Bharat Heavy Electricals Limited, Trichy 620014, India
autor
  • Welding Research Institute, Bharat Heavy Electricals Limited, Trichy 620014, India
Bibliografia
  • 1. Masubuchi K. Analysis of welded structures. Oxford: Pergamon Press; 1980.
  • 2. Okerblom NO. Calculation of deformation of welded metal structures. London: HMSO; 1958. p. 1-50.
  • 3. Farkas J, Jármai K. Analysis of some methods for reducing residual beam curvatures due to weld shrinkage. Weld World. 1998;41(4):385-98.
  • 4. Wan YL, Bibby MJ, Goldak JA. Transient longitudinal strain changes during welding. Exp Mech. 1979;19(7):259-64.
  • 5. Jung GH. Plasticity-based distortion analysis for fillet welded thin plate T-joints. Ph.D. dissertation, The Ohio State University, Columbus; 2003.
  • 6. Yang YP, Athreya BP. An improved plasticity-based distortion analysis method for large welded structures. J Mater Eng Perform. 2013. https://doi.org/10.1007/s11665-012-0420-z.
  • 7. Brand PC, Keijser THD, Ouden DHD. Residual Stresses and Plastic Deformation in GTA-Welded Steel. Weld J Res Suppl. 1993;72(3):93-100.
  • 8. Xie LS, Hsieh C. Clamping and welding sequence optimisation for minimising cycle time and assembly deformation. Int J Mater Prod Technol. 2002;17(5/6):389-99.
  • 9. Lee SH, Kim ES, Park JY, Choi J. Numerical analysis of thermal deformation and residual stress in automotive muffler by MIG welding. J Comput Des Eng. 2018. https://doi.org/10.1016/j.jcde.2018.05.001.
  • 10. Schenk T, Richardson IM, Kraska M, Ohnimus S. Influence of clamping on distortion of welded S355 T-joints. Sci Technol Weld Join. 2009. https://doi.org/10.1179/136217109X412418.
  • 11. Ma N, Huang H, Yin X, Guo N. Welding distortion and inherent deformation under temporary tacking and its released states. Sci Technol Weld Join. 2016. https://doi.org/10.1080/13621718.2015.1123443.
  • 12. Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metall Mater Trans B. 1984;15(6):299-305.
  • 13. Gray T, Camilleri D, McPherson N. Control of welding distortion in thin-plate fabrication. Cambridge: Woodhead Publishing; 2014.
  • 14. EPRI. The grades 11 and 12 low alloy steel handbook: 1ĽCr˝Mo, 1Cr˝Mo,13CrMo44, 620/621, STPA 22/23. Palo Alto: Electric Power Research Institute; 2007. p. 1013358.
  • 15. Ferro P, Porzner H, Tiziani A, Bonollo F. The influence of phase transformations on residual stresses induced by the welding process-3D and 2D numerical models. Model Simul Mater Sci Eng. 2006;14:117-36.
  • 16. Song S, Dong P, Zhang J. A full-field residual stress profile estimation scheme for pipe girth welds. In: Proceedings of the ASME 2012 pressure vessel & piping division conference (PVP2012), July 15-19, 2012, Toronto, Canada.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aacaab56-5fe0-496c-a9a1-b94a26d4a552
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.